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L. Introduction

This report provides an operational and scientific overview of the TicoFlux II expedition
(R/V Melville cruise VANCO2) to the incoming plate along the Costa Rica margin, eastern
equatorial Pacific Ocean. This report was prepared during and at the end of scientific operations,
so all analyses are preliminary. Greater detail regarding background, motivation and strategy is
presented in the NSF proposal that funded this work, along with references to previous work in
this area. Results from TicoFlux I are summarized below. The TicoFlux II expedition was highly
successful both operationally and scientifically. We had some initial difficulties with equipment,

but these were mostly resolved and we achieved our primary objectives.

A. Scientific Objectives

The TicoFlux II expedition was the second cruise of a field, lab, and modeling program
to investigate the nature of hydrothermal activity and its influence on lithospheric and subduction
processes offshore of the Nicoya Peninsula, Costa Rica margin. We focused observational efforts
ona 120 nmi x 120 nmi (2° x 2°) region largely seaward of the trench (Figures I-1 and I-2)
because this area contains fundamental transitions in the structural, thermal, and hydrogeologic
state of the incoming plate. Part of the plate in this region formed at the East Pacific Rise and has
unusually low heat flow, but the adjacent crust formed at the Cocos-Nazca Spreading Center has
heat flow consistent with conductive models of lithospheric cooling. Field components of our
experiment include seismic, swath-mapping, heat flow, coring, and geochemistry programs on
18-24 Ma lithosphere seaward of the Middle America Trench. This work will be followed up
with additional laboratory analyses and modeling. Collectively, these efforts are intended to
address the following questions:

(1) What is the thermal state of the lithosphere being subducted below the Nicoya
Peninsula?

(2) What are characteristic heat and fluid fluxes responsible for this thermal state, how
does water enter and exit the crust in this area, and what are the characteristic length scales of
flow?

(3) How do the thermal state, water content, sediment composition, and diagenetic state

of the incoming plate influence the mechanics of the subduction zone?
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(4) What are the chemical implications of extensive fluid circulation within the incoming
plate, both to the subduction zone and to the overlying ocean, and how can these data be used to

understand global fluxes?

B. Regional Setting

The Cocos plate has a complex tectonic history in our work area, comprising seafloor
generated at the East Pacific Rise (EPR) at a fast spreading rate, and at the Cocos-Nazca
Spreading Center (CNS) at an intermediate spreading rate (Figs. I-1 and I-2). The plate is being
subducted into the Mid American Trench along the eastern side of our study region. The area of
EPR-generated seafloor offshore of the northern Nicoya Peninsula has magnetic anomalies that
strike approximately N4OW, subparallel to the trench. Towards the middle of the Nicoya
Peninsula there is a boundary across which the magnetic anomalies abruptly switch orientation
by ~90°, to N45E. This boundary is thought to separate crust formed at the EPR from that
formed at the CNS, making it the trace of the triple junction or fracture zone, and also
corresponds (at least, in part) to an abrupt difference in the relief of upper basement, known
regionally as the “rough-smooth boundary” (RSB). Continuing to the southeast, there is another,
more subtle, realignment of magnetic anomalies, which corresponds near the trench to the Fisher
Ridge. The crust between the RSB and Fisher Ridge is sometimes referred to as the “smooth
segment,” while crust south of the Fisher Ridge is referred to as the “seamount segment”. As
suggested by these names, seamounts are more common southeast of Fisher Ridge than
northwest of the ridge. The passage of the Galapagos hot spot under CNS-generated lithosphere
has contributed to its rough basement relief and the formation of the Cocos and Carnegie ridges
to the south of the TicoFlux study area.

Heat flow data within and near the study area collected prior to TicoFlux I are sparse
(typical spacing of 60-120 km), but there is a pattern to the distribution of these early values.
North of the RSB, heat flow is generally low (average = 31 mW/m? ), whereas heat flow to the
south of the RSB is generally higher (average = 110 mW/m?” ). The age contrast across the RSB
is too small to account for the observed transition in seafloor heat flow. The global average of
measured heat flow for this crustal age (20-25 Ma) is about 72 mW/m?’, corresponding to a heat
flow fraction (Qgyserved /Qexpectea ) OF 0.67. This fraction indicates that, on average on a global basis,
1/3 of heat flow through oceanic lithosphere of this age is lost by advection. The heat flow

fraction north of the RSB is generally <0.25, suggesting an even larger fraction of advective heat
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loss, but the heat flow fraction south of the RSB is generally >1.0. Hence, heat flow north of the
RSB is low compared to both lithospheric-conductive and global average values, whereas that
south of the RSB is high compared to global average values. The latter situation is particularly
unusual because most young-crust sites have heat flow significantly lower than that predicted by
conductive lithosphere models, presumably because advected heat loss is not measured by heat

flow probes.

C. Results from TicoFlux I

The TicoFlux I expedition April-May 2001 on the R/V Maurice Ewing (cruise EW0104)
included regional and local goals. We mapped out regional crustal structures and define the
various tectonic boundaries across the work area using a combination of seismic, thermal, coring,
and geochemical tools. We examined the various tectonic boundaries (ridge jump, propagator
trace, triple-junction trace, fracture zone, faults) to determine which were associated with
thermal, chemical, seismic and hydrogeologic boundaries. We also wanted to establish the nature
of thermal and chemical variations around basement outcrops, and evaluate directions and
intensity of fluid flow within basement using thermal and chemical tracers. The last issue was the
primary focus of the TicoFlux II cruise during September-October 2002.

1. Seismic reflection

Prior to TicoFlux I, little information was available on the basement relief and sediment
thickness in our study region (except for immediately adjacent to the trench). Older single
channel data was available mainly in analog form and was of very poor quality. Interpretation of
local tectonics, heat flow, and fluid flow required acquisition of a modern seismic reflection data
set. We knew prior to TicoFlux I that exchange between crustal fluids with the overlying ocean
was most likely to occur either where basement outcrops at the sea floor or where the sediment
cover is thin. Seismic data are essential for mapping out basement and sediment geometries. We
collected 1800 km of seismic data from a 10-gun array and a 6-km long hydrophone streamer
array with 480 channels. Hydrosweep bathymetric data were collected during the multichannel
seismic work and often as we transited between heat flow and/or coring sites. A low-angle
reflection, possibly a crustal-penetrating fault, ~30 km from the trench axis and a number of
seamounts, outcrops, and buried basement highs were found, significantly increasing the number
of potential targets for coring and heat flow work. The seismic data indicate that there is regional

sediment coverage on the order of 300-400 m thick above a highly reflective basement. Drilling
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results from ODP Site 1039 documented that the upper 150 m of sediments are composed of
hemipelagic mudstone and the lower section is largely pelagic nannofossil ooze. Seismic lines
revealed the influence of magnetic and tectonic activity within the survey area, including high-
angle faults that penetrate basement rocks and sediments, common sills defining the top of
acoustic basement, and local basement highs, some of which penetrate seafloor sediments. Many
basement ridges and seamounts show evidence for post depositional or syndepositional
deformation. In some cases the lowermost 0.15 s of strata appear to be deformed after they were
deposited. The well-layered middle part (pelagic ooze) appears to be deformed during
deposition, and the upper hemipelagic layer generally covers the deformation. However, there
are many examples of deformation extending through to the surface and clearly affecting the
hemipelagic sediments. Away from local basement highs and faults, basement is remarkably flat.

2. Heat flow

We collected 127 measurements with a 3.5 m, 11-thermistor, violin-bow heat flow
system leased from Earl Davis and colleagues at the Pacific Geosciences Center. These data
were collected during 13 transects (“stations”) with measurements generally spaced 1 nm (~1.8
km) apart. In addition, fourteen measurements were made with outrigger probes attached to the
sediment core barrels. These tools were developed collabotratively by Antares (Berlin, Germany)
and Heiner Villinger and colleagues from the University of Bremen.

Heat flow data collected during TicoFlux I helped to define an extreme contrast in
thermal conditions on the Cocos Plate seaward of the Middle America trench. Heat flow values
measured on seafloor created at the EPR were anomalously low (generally only 20-40 mW/m?,
about 20-40% of that predicted by conductive cooling models). In contrast, heat flow values
measured on seafloor generated at the CNS was about equal to that predicted by conductive
models. We crossed the thermal transition from low heat flow to high heat flow in four places,
on HF-01, HF-08, HF-10, and HF-12. In all cases, the transition from cool to warm conditions
occurs across a distance of 5 km, often with most of change between adjacent measurements <2
km apart. The width of the thermal transition should scale with the depth to the “source” of the
transition; a shallow, hydrothermal cause should cause a narrow transition, whereas a deeper
origin due to lithospheric thermal differences should give rise to broader transition. The
remarkably abrupt transitions between thermal regimes is consistent with models of shallow

hydrothermal circulation in EPR-generated basement.
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Surprisingly only one on the four transitions (HF-08, nearest to the trench) coincided with
a tectonic boundary, in this case the triple junction/fracture zone trace between EPR-generated
and CNS-generated seafloor. The transitions along HF-10, HF-12, and HF-01 are offset to the
northwest of the crustal change by about 40, 30, and 30 km, respectively and are much closer to
basement outcrops than to tectonic boundaries. These basement outcrops, common on EPR-
generated seafloor by conspicuously absent on CNS-generated seafloor immediately south of the
triple junction/fracture zone trace, appear to allow water to bypass regionally thick sediments and
move rapidly between the crust and ocean.

3. Pore Water Chemistry and Sedimentology:

Forty-four sediment cores were taken from 10 different regions in the TicoFlux study
area during the first cruise. There were primary sediment lithologies identified in these cores:
hemipelagic mud, nannofossil chalk, mixed sediment, variegated clay, and volcanic ash. By
extracting pore waters from the sediments for geochemical analyses, our goals were to
understand both fluid flow in the TicoFlux area and the significance of ridge-flank hydrothermal
circulation on the global solute fluxes. Most core sites were situated on basement highs with
relatively thin (< about 75 m) sediment to increase the chance of detecting water flow.
Geochemical measurements at sea included pH, alkalinity, chlorinity, fluoride, calcium,
magnesium, and phosphate. The geochemisty of the pore waters indicated fluid seepage in three
areas, with rates up to 1 cm/yr, including a small basement high within the EPR crust (GC09), a
shallow dipping reflector near the trench (GC18,19,38, 39) within EPR crust, and a local
basement high on the propagator trace within CNS crust (GC23). The site over the basement
fault had heat flow over 600 mW/m’ and an unusually high calcium concentration indicating a
deep source for the fluids. Work during the TicoFlux II expedition was intended to sample these
and other sites of fluid seepage, and to determine the chemistry of fluids within the basement

reservoir(s) below seepage sites.

II. TicoFlux II Operational Summary

Operations during TicoFlux II are listed in Table II-1. The ship reached the dock in
Puerto Caldera prior to TicoFlux II on schedule, but could remain at the dock only for one day
before moving to anchorage. This complicated cruise preparations somewhat, but fortunately all
equipment and most supplies had been preloaded in San Diego before the prior cruise. Port call

was busy with considerable time spent preparing the seismic, coring, heat flow, and survey gear.
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We left port as scheduled at 1600 on 9/7/02. We completed a 14 hour transit to the southern edge
of our work area and put equipment into the water to run a test of the seismic gear. No useful
data was collected during this initial test, but it provided an opportunity to get the guns and data
acquisition system working properly, and the test was considered to be a success. The seismic
system generally worked throughout the cruise, although there was noise in one of the streamer
channels, we sometimes could not always keep the guns synchronized, and we had difficulty at
first maintaining sufficient power in the batteries used to power the system. This last problem
was solved when a larger-capacity was delivered to the ship.

We transited to the first coring station, a basement high (La Misma) located on the slope
of the trench, and three cores were collected. Coring operations (gravity and piston) were run
from the starboard rail using the trawl wire and winch. A 12-kHz pinger was attached to the wire
for all gravity coring operations and was used for determining corer locations relative to the
bottom. Coring stations typically lasted 9-14 hours, the time required to collect 3-4 gravity cores,
or a combination of gravity and piston cores. Some coring time was also used to complete two
hydrocasts to collect bottom water samples later during the cruise. The tension meter for the
trawl wire required repair early in the cruise, but once this was completed, we proceeded to the
first heat flow station, located above the trace of a low-angle basement reflector apparent on a
multichannel seismic line collected during TicoFlux 1.

Multipenetration heat flow data were collected with the PGC probe using the stern A-
frame. Multipenetration heat flow stations during TicoFlux II were generally 12 or 24-32 hours
in length. Outrigger probes were also attached to most core barrels, allowing assessment of
thermal gradients at the same time as cores were collected. Longer heat flow stations were
“sandwiched” between shorter coring stations, allowing the coring crew to remain on a
(nominally) regular shift schedule, and shorter heat flow stations (used mainly later in the cruise)
alternated with coring stations of approximately equal length. We used six seismic surveys to
break up the schedule to allow a rough balance between time dedicated to heat flow and coring
operations, and to help keep the scientific crews on regular shifts. By the end of the cruise,
seismic, heat flow and coring time consumed 18%, 35%, and 31% of the available time,
respectively, with remaining time dedicated to transits and equipment repair. Operations
switched between seismic, heat flow, and coring throughout TicoFlux II, and we returned to port

after 31 days of scientific operations, arriving at 0700 on 10/9/02.
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II1. Seismic Reflection Surveys

We acquired 1200 km of seismic reflection data (Table I1I-1) during TicoFlux II. The
source was two GI (generator injector) guns. On lines 1-13 we used 105/105 inch® chambers, and
for all other lines 45/105 inch’ chambers. The receiver cable consisted of four 50 m active
sections of 50 phones each. Shooting speed was 11 km/hour (approximately 3 m/s) and the shot
interval was 10.8 seconds or approximately 33.3 m, giving a nominal 3 fold stacking geometry.
The primary purpose for collecting the seismic data was to provide an accurate indication of
sediment thickness and basement relief for heat flow and coring programs. In addition, the GI-
gun source provided high resolution images of the sedimentary section, allowing us to refine
estimates of timing of tectonic and volcanic events within the Cocos plate, and to image mass
wasting phenomena on seamounts.

The seismic data were recorded with an OYO DAS acquisition system onto Exabyte
tapes. Data processing included quality control and editing, brute stack, deconvolution, and water
bottom mute and f-k migration, using the SIOSEIS processing system written and maintained by
Paul Henkart at Scripps Institution of Oceanography. Data are archived on DAT tapes and CD-
ROMs. The locations of individual surveys are shown in Figs. III-2 to 7, and selected data are
shown (with collocated heat flow values) in Figs. III-8 to 24.

The seismic lines provided useful images over a major fracture zone, the propagator
trace, several seamounts, and numerous seaknolls. A few of the seamounts and most of the knolls
were not known prior to this work. TicoFlux II Lines1, 5a, and 19 cross the fracture zone, which
is on strike of the triple junction trace of Barckhausen et al. (2001). The fracture zone has a very
steep south face, and a gentle north slope. Sediments onlapping the latter show two periods of
debris apron formation, and a period of uplift during the middle part of the stratigraphic
sequence. Lines 16, 17 and 18 cross the propagator trace and illustrate its complexity. Seamounts
are crossed by Lines 26 and 23b, 27 and 38a. Tilting, unconformities, and onlap relationships of
sediments adjacent to the seamounts give a history of activity. However, the seamounts all
appear to have been formed early in the history of the plate. Knolls are crossed in Lines 6 and 8a,
21, 22,24, 28, 29, 31, 32, 33, 35, 36, 37, and 38a. Some of the latter crop out at the sea floor
whereas others are covered with sediment. While bathymetrically minor, these knolls play
significant roles in modulating heat and fluid flow throughout the region.

One seamount, crossed by Line38a, has suffered a major collapse event. Layered strata

on both the seamount and the collapsed fragment illustrate the slide occurred through rotational
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slumping. The slump block is 2 km long, 3 km wide and at least 300 m thick. It has a heave of
several hundred m and a throw of 300 m. In sufficiently shallow water depths such a slump could
generate a major local tsunami, if the collapse were to happen all at once. The timing of the

slump is unknown, except that it is likely to have happened in the past 3 Ma.

IV. Heat Flow Surveys
The TicoFlux II seafloor heat flow program comprised two main components. Most

measurements were made a 3.5-m, 11-thermistor, violin-bow heat flow system built and
maintained at the Pacific Geoscience Center by Earl Davis and colleagues. This system provided
real-time (analog) telemetry from four thermistors and in-situ thermal conductivity
measurements. Internal power allowed stations to run 30+ hours when fully charged, and most
stations consisted of 10-20 measurements separated by 100-1000 m (Fig. IV-1). The second part
of the seafloor heat flow program was based measurements made with autonomous outrigger
temperature probes banded to piston and gravity core barrels. The tools were modified versions
of instruments run during TicoFlux I, built by Antares (Berlin, Germany) in collaboration with
Heiner Villinger and colleagues (University of Bremen). Both kinds of probes featured a small,
cylindrical pressure case (18.5 cm long, 1.5 cm diameter) powered by a single, 3.0 V lithium
battery. Serial communication is accomplished through the pressure case, allowing the
electronics to remain sealed within the pressure case through most of the expedition. We also
deployed wireline MAPRSs during TicoFlux II, tools leased from the NOAA/PMEL lab
(developed and maintained by Ed Baker and Sharon Walker). These instruments comprise a data
logger, rapid-response thermistor probe, pressure (depth) sensor, and nephelometer and are
intended to allow rough assessment as to the presence and magnitude of hydrothermal plumes
during coring, dredging, or other wireline operations. We generally ran a single MAPR tool,
clamped to the wire 30-80 m above the gravity core weight, during stations in which there was a

nearby basement outcrop.

A. Multipenetration Heat Flow Stations

A summary of heat flow station targets, dates, and penetrations is presented in Table IV-
1. Preliminary results of multipenetration heat flow measurements are listed in Table [V-2.
Station locations are based on P-CODE GPS positions when the probe first penetrated, with

corrections for the distance between the GPS antenna and the stern A-frame and ship heading.
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There are errors associated with uncertainties in the location of the probe relative to the ship, but
we generally waited for the wire angle to straighten and the 12-kHz pinger in the wire to indicate
that the probe had swung to vertical before putting the probe in the seafloor.

Heat flow measurements were made by lowering the heat flow probe into the seafloor at
40-60 m/min (depending on winch capabilities, which varied throughout the cruise). The probe
was left in place for 7 minutes to allow partial equilibration after penetration, and then a
calibrated heat pulse was fired to determine thermal conductivity, and another 7 minutes of data
were collected (see examples, Fig. IV-2). After a measurement was completed, the probe was
raised to 50-200 m above the seafloor while the ship transited at 1-2 kts to the next site. Analog
telemetry of tilt and four thermistor channels allowed real-time assessment of probe functioning
and crude estimation of thermal gradients. Complete digital data records were downloaded from
the probe following recovery.

Multipenetration heat flow data were parsed into individual penetration files and
processed using SlugHeat, a Matlab program based largely on the hfred/hflow set of processing
programs (processing example: Fig. IV-3). Additional analysis will be required to finalize the
heat flow values listed in this report (Table IV-2), but values are unlikely to change by more than
a few percent as a result of reanalysis. No corrections have been applied for at this stage for

instrument tilt (generally less than 5°), sedimentation, or local topography.

B. Outrigger Temperature Loggers on Cores

We used outrigger probes with two different external and mount designs. One probe
design included a “short” sensor tip extending 2 cm from the end of the pressure case (slightly
shorter than the 2.5-cm tip of the original design), containing a 10-kOhm (nominal at 25 °C),
high-precision thermistor. The second probe design had identical pressure case and electronic
components, but a 35-cm-long probe tip, with the thermistor positioned 10 cm from the end of
the tip.

Two kinds of probe mounts were designed and constructed at UCSC. The shorter probes
were deployed in cylindrical cases welded to the ends of metal fins held 12 cm from the outside
of the core barrel. The design of these assemblies was based on the University of Bremen design
used during TicoFlux I, except that the new metals fins were somewhat thicker, and the mounts
were held onto the core barrels with four stainless steel bands (rather than two). Unfortunately,

the probe mounts were constructed with a diameter somewhat larger than the OD of the core
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barrels, but rubber gasket material between the mounts and core barrels filled the gap in diameter
and increased friction between the mounts and core barrels, helping them to remain fixed during
deployment.

The second mount design was based on outriggers used during the early days of oceanic
heat flow studies, with the probe tips run up and over the top of a grooved fin. The fins were
constructed of Delrin and attached to core barrel mounts with metal screws, and banded to the
core barrels. A gap in the fin corresponded to the location of the thermistor sensor. A clam-shell
pressure case holder supported the electronics immediately above the core barrel mount. Each of
these designs had advantages and disadvantages, and it was beneficial to run combinations of
these instruments in several cases, as described later. On most deployments, separate bottom
water and tilt sensors were run in the top of the core weight.

Outrigger temperature probes were attached to 57 gravity and piston cores, yielding
useful estimates of in-situ temperatures on 42 deployments. The outrigger tool data comprised
the equivalent of two-three multipenetration stations, including some of the highest heat flow
values measured during TicoFlux II, and also helped to determine where to place (or not place)
subsequent multipenetrations stations. Operator error accounted for a lack of data recovered
during one deployment, and failure of the core barrel to penetrate or tipping of the core barrel led
to the other deployments from which no useful data were derived. Prior to the cruise, we were
sent small resistors that we were instructed to solder to the circuit boards of the tools, to prevent
static discharge during use, but attachment of these resistors led to communication difficulties
with several tools. Subsequent removal of these resistors allowed the tools to be run. Examples
of outrigger probe data are shown in Figure IV-4, and preliminary results are listed in Table [V-
3.

The short probes proved themselves to be particularly robust, as they tended to bang
against the side of the ship during corer recovery but were unharmed by this. The greatest
difficulty we had with the small tools was bending of the probe tips, which extended up to 12
mm in front of the mount housings, during penetration of lithified sediments. We ran some of
these tools with a shorter tip extension, through use of spacers in the mounts, but shorter
extension led to less ideal sensor response following penetration. In contrast, the long probes
provided data that looked much more like multipenetration data from the PGC tool, with a
smaller frictional disturbance due to the smaller upset on the long outrigger fin relative to that

used with the short tools. But the Delrin fins used with the longer tools are more fragile, as are

Preliminary cruise report: TicoFlux II, VANCO2 Page 10



the longer probe tips, and the clam shell that holds the electronics on the long tools can get
caught by the wire run down the core barrel to assist with corer recovery. In addition, the longer
tools occupied a substantially larger footprint on the core barrels. In fact, when running a single-
pipe gravity core, it was not possible to put more than two long probes and one short probe on

the barrel, and still leave sufficient clearance below the cradle that holds the coring weight.

C. Heat flow results

Heat flow work was focused mainly around outcrops, where hydrothermal fluids were
thought to be entering or leaving basement, and over buried basement highs. Some additional
stations were intended to resolve thermal transitions well away from basement outcrops. In this
brief, preliminary summary, we group stations by target type and area. Station and penetration
locations are shown in Figures IV-5 to IV-16, and collocated heat flow and seismic data are
shown in Figures II1-8 to III-24.

Heat flow stations HFO1 and HFO2 were located across and near the area of high heat
flow just seaward of the trench, in the northern end of our field area (Figs. IV-5 and IV-6). These
stations were intended to help define the extent of the high heat flow region. HFO1 was run along
seismic TF1-Line 11, where a bright, continuous, low-angle reflector was observed. This was
thought to be the seaward extension of a less resolved reflector on seismic line TF1-Line 5,
above which we found the highest heat flow values. However, the heat flow along HFO1 was not
particularly elevated, so if this reflector is a fault or other feature that hosts hydrothermal
circulation along TF1-Line 5, it is considerably less hydrothermally active along TF1-Line 11.
HF02, oriented perpendicular to the trench, crossed a buried basement high seaward of the high
heat flow area identified during TicoFluxl. The heat flow over the new feature was also elevated,
up to 637 mW/m?, but the continuation of this heat flow station towards the trench did not reveal
additional values above 600 mW/m’, and values drop to 50 mW/m? as the trench is approached.

Heat flow stations HF03 and HF04 were located along the propagator trace in the eastern
survey area (Figs. IV-7 and IV-8), and were designed mainly to find coring targets and delineate
the local hydrologic significance of outcrops. HFO3 has the typical “high” values of the CNS
crust ranging from 93 to 144 mW/m’. HF04 is located between the topographic high of the
propagator trace and a small basement outcrop to the west. The first measurement on the thinly
sedimented slope of the propagator was 199 mW/m?, but heat flow rapidly decreases to the

single digits in the thickly sedimented area towards the outcrop and remains low as the outcrop is
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approached, suggesting that the propagator ridge may be a site of hydrologic discharge and the
seamount a site of local recharge. These observations, along with values determined during
coring, confirm that there are patches within the CNS crust where vigorous water flow occurs,
and that there are closely-spaced variations in heat flow, as apparent from scattered pre-TicoFlux
measurements in this region..

Heat flow stations HFO5, HFO7, HF11 and HF16 were located close to the largest outcrop
studied during TicoFlux II, Tengosed Seamount, near the center of our work area (Figs. IV-9,
IV-11, and IV-13). This feature is approximately 5 nmi in diameter and rises 1100 m above the
surrounding seafloor (and 1500 m above the surrounding top of basement). Station HF05
revealed very low values immediately adjacent to the seamount, while values were elevated
adjacent to the seamount along HF16. Measurements somewhat farther from the seamount on
HFO07 and HF11 were uniformally low, except where basement rose close to the seafloor (HF07)
or a large-scale thermal transition was crossed between cooler and warmer parts of the Cocos
Plate (HF11) indicating that Tengosed is likely a site of regional recharge for the plate.

Four heat flow stations were extended radially away from Fuerte outcrop, about 25 nmi
southwest of Tengosed Seamount (Fig. IV-10). Stations HF06, 09, 12, and 13 extend in the
southwest, northeast, northwest, and southeast directions, respectively. On all but the
southeastern flank (HF13) heat flow is high on the thinly sedimented slopes adjacent to the
outcrop, 130-340 mW/m’, but values decrease rapidly as sediment thickness increases away from
the slopes, reaching lows near 30 mW/m’. Heat flow from gravity cores on the upper flanks on
the northeast side (GC 52-54) and on the southwest side (GC 55), ranges from 200 to 1160
mW/m’. Collectively, these results suggest that Fuerte outcrop is a site of (relatively low-
temperature) hydrothermal discharge. An exception to the pattern cited was found with GC56 on
the southwest side, where heat flow was only 36 mW/m?”. For HF13 to the southeast, values are
low right up to the edge of basaltic exposure (<20 mW/m?), indicating that this part of the
seamount is not discharging warm fluid. On the southwest line (HF06) away from the steep
slope, the heat flow increases to ~100 mW/m”.

Heat flow stations HFO7 and HFO8 were located adjacent to Dorado outcrop (Fig. IV-11).
Values from HF-07 are <10-55 mW/m?®, higher where basement shallows, suggesting that
thermal conditions are dominated by recharge from Tengosed to the east. But multipenetration
values from HFOS are as high as 389 mW/m?® on the west flank of Dorado, and heat flow

determined with outrigger probes on nearby gravity cores (GC 33-42 ,50,51) are relatively high,
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between 100 and 1000 mW/m’. Collectively, these results indicate that Dorado is another site of
localized, low-temperature, hydrothermal discharge.

Heat flow data were collected over two buried basement highs on the western edge of our
field area, HF14 and HF15 (Figs. IV-15 and IV-15). Heat flow was 55 mW/m’ near the peak of
the basement high along HF14, but decreased to 12 mW/m’ on the flank. In contrast, heat flow
was higher (essentially equal to that predicted by conductive lithospheric cooling models, based
on seafloor age, about 100 mW/m?) along HF15, suggesting that this may be a small area in an
otherwise hydrothermally-active plate where there is no hydrothermal mining of lithospheric
heat.

Station HF10 (Fig. IV-12) ran across Perdido outcrop and the triple junction trace that
separates EPR-generated and CNS-generated seafloor. The EPR side of this survey includes
some of the lowest heat flow values measured during the TicoFlux expeditions, including three
values that are <4 mW/m? (approaching the resolution of the instruments and analytical
methods). Values are low in the immediately vicinity of the exposed basement, but rise to
conductive lithospheric values on the CNS side of the outcrop.

The final heat flow station of TicoFlux II, HF17, was intended to resolve the location of
the warm-cool transition northwest of the triple-junciton trace (Fig. IV-16). But this survey
revealed remarkably consistent values of 103-109 mW/m?, indicating that we never found the
transition, and that the geometry of the boundary between warm and cool areas is highly
irregular. This finding is consistent with a strong dependence of hydrothermal cooling on

proximity to seamounts, and on strong heterogeneity and/or anisotropy in basement permeability.

D. MAPR Deployments

Preliminary MAPR results are summarized in Figures IV-17 to IV-26. Locations of these
stations can be found on the corresponding tables and figures in Section V on coring. One of the
paradoxes of the hydrothermal surveys during TicoFlux II is that, although the fluid fluxes
thought to be responsible for suppression of seafloor heat flow over vast areas of EPR-generated
seafloor must be enormous, the temperatures of fluids existing basement are likely to be little
different from bottom seawater. In addition, these hydrothermal fluids are likely to have
interacted with basement at temperatures <10-15 °C, and thus are likely to have a chemistry little
different from bottom seawater. Thus locating plumes in this region on the basis of either

temperature anomalies or nephelometry is likely to be very difficult, despite the apparent vigor
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of circulation (based on regional heat flow values). It seems that subtle thermal anomalies may
be the most likely indicators of massive hydrothermal discharge, since low temperature fluid
plumes are likely to contain few particles, and therefore we have plotted temperature versus
water depth to get a first order indication as to the possibility of identifying plumes.
Deployments during GCO1-07 (Figs. IV-17 and IV-18) illustrate typical temperature-
depth relations in this area in places where there is no evidence for thermal anomalies. Bottom
water is typically 0.05-0.10°C warmer than the thermal minimum, and variations in temperature
with depth below the minimum are roughly linear. The following MAPR responses near the
seafloor water might be anomalous, relative to this (admittedly arbitrary) standard: GC16, GC18
(Fig. IV-19), GC22, GC23 (Fig. IV-21), GC33-35 (Fig. [V-22), GC49-50 (Fig. IV-24), and GC-
55 (Fig. IV-26). More work will be required to compare these MAPR responses to values
determined during heat flow operations, assess proximity to outcrops, and determine whether

there is any indication of hydrothermal plume activity in the TicoFlux Il work area.

V. Sedimentology and Stratigraphy

Figure V-1 and Table V-1 show the locations of cores collected during TicoFlux II. Core
locations are also shown in greater detail on local bathymetric maps in Figs. V-2 to V-11. The
sediment types found in each core are illustrated in Figs. V-12 to V-19, and summaries of core
recovery are listed in Table V-1. We assigned the lithologies to the following basic categories:
hemipelagic mud, carbonate ooze, mixed sediment, variegated clay, volcanic ash, debris-flow
deposits, sand turbidites, and Mn-oxide. Gradations exist among most categories, and many of
the contacts between lithologies are transitional. Each of these primary sediment types is
described briefly in this section.

Hemipelagic Mud. This mixture of biogenic and siliciclastic debris (diatomaceous silty

clay) is the most common lithology throughout the study area. The texture ranges from silty clay
to clay, and the color is uniform dark olive gray. Terrigenous grains consist largely of clay
minerals, silt-sized plagioclase, and minor quartz. Biogenic constituents include abundant
diatoms and variable amounts of radiolarians, sponge spicules, and silica needles/spines.
Carbonate content is low, consisting mostly of coccoliths. Other particles in minor to trace
quantities include volcanic glass shards and opaque grains. The mud is typically homogeneous to

mottled, with local trace fossils (Zoophycos).
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Calcareous ooze. Fine-grained pelagic sediment is white to light gray or very pale brown

in color and typically mottled. Coccoliths make up the primary grain type in most such deposits.
Other biogenic particles include foraminifers, fragments of larger carbonate shells, diatoms,
radiolarians, and discoasters. Foraminifers are unusually abundant in GC-24, and fragments of
chalk in GC-58 contain large amounts of inorganic carbonate (micrite). The content of clay
minerals is low to very low in the chalk. Locally, burrows are filled with greenish black Fe-Mn
oxide. This lithology also tends to be very firm, which inhibited penetration of cores.

Mixed Sediment. The category of mixed sediment differs from the typical hemipelagic

mud by its relatively high content of calcareous nannofossils, plus siliciclastic grains. Color
ranges from gray to light olive brown and light yellowish brown. Primary constituents include
clay minerals, quartz/plagioclase silt, coccoliths, and carbonate shell fragments, with lesser
amounts of diatoms and radiolarians. This lithology typically occurs as a transition from
calcareous ooze to hemipelagic mud.

Variegated Clay. The variegated clay lithology ranges in color from brown to light olive

brown, very pale brown, olive, olive gray, olive brown, yellowish brown, dark yellowish brown,
and dark grayish brown. Clay minerals make up the bulk of these deposits; the amount of
quartz/plagioclase silt ranges from trace to minor. The biogenic content is also unusually low.
Volcanic glass shards are common in some samples, and core GC-50 contains abundant zeolites
within an interval of altered clay. Clay-rich sediments are common in close proximity to basalt-
sediment contacts. In many cases, fragments of basalt and Mn-oxide were recovered together
with the clay. Reasons for the variability in color could not be determined by smear-slide
examination, but the colors may be related to subtle differences in clay mineralogy, microfossil
content, and/or alteration.

Volcanic Ash. There are two basic types of volcanic ash. The first type ranges in color
from white to light gray, and the particles consist almost exclusively of clear, unaltered glass
shards. Some such samples also contain euhedral crystals of fresh plagioclase, pyroxene, and/or
amphibole. The light-colored layers probably originated through primary ash falls. The second
type of ash ranges in color from dark gray to black. Fresh glass shards within the dark ash beds
are brown in color, but heavily altered and devitrified glass shards are also common. Other
constituents include vitric rock fragments, plagioclase and pyroxene crystals, opaque grains, clay
minerals, and biogenic debris. The abundance of heavily altered grains indicates that older

volcanic rocks were incorporated into the ash clouds during explosive eruptions. The ash layers
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range from less than 1 mm in thickness to more than 10 cm. Particle size ranges from medium
sand to coarse silt. Most beds have sharp bases and sharp to diffuse tops. Normal size grading is
common. In some cases, the ash deposits occur as irregular patches or as material filling vertical
burrows.

Debris-flow deposits. Remobilized sediment was recovered in two cores: PC-45 and GC-

58. The floor of the Middle America Trench contains two mass-flow deposits. The source of that
debris is probably the upper trench slope on the landward side, which is incised by numerous
slope gullies and small canyons. The older of the two deposits is 67 cm thick and consists
largely of remobilized dark olive gray mud with sparse fragments of moderately indurated
mudstone. The upper deposit is over 220 cm thick and contains abundant fragments of
moderately to poorly indurated hemipelagic mudstone in a matrix of softer dark olive gray mud.
Clast size ranges up to 18-20 cm and clast fabric is disorganized. Clast shape varies from
subangular to rounded. The top of the upper debris-flow deposit grades into a turbidite sand.
The debris from Buquito submarine slide, in contrast, contains angular fragments of indurated
light gray carbonate ooze supported by a matrix of softer dark olive gray hemipelagic mud.
Clast size ranges up to 5-10 cm and the fabric is disorganized. The brecciated chalk contains
abundant inorganic carbonate, which probably formed through recrystallization of coccoliths.
Debris recovered from the flank of Buquito measured only about 10 in thickness and was limited
to the bottom of the core cutter. It indicates, however, that deeply buried sedimentary deposits
were exposed along the failure surface of the submarine slide.

Sand turbidites. The only core to contain sand turbidites comes from the floor of Middle

America Trench (PC-45). Bed thickness ranges from 50 to 67 cm. The larger sand-sized grains
consist of moderately indurated pieces of mudstone (weak enough to crush with one’s finger
tips), but there is also abundant siliciclastic quartz, plagioclase, and carbonate debris in the fine-
sand to silt fraction. The turbidites display normal size grading. In one case the sand rests
immediately above a debris-flow deposit, which indicates that the grain support mechanism
changed from matrix-strength and buoyancy to turbulent autosuspension as seawater was
entrained into the flow. |

Mn-oxide. This black hydogeneous sediment occurs routinely at or near core tops and/or
the sediment-basalt interface where rates of hemipelagic sedimentation are low. The mode of
occurrence ranges from indurated nodules to coatings on basalt and mudstone fragments, cm-

thick crusts, scattered non-indurated patches, gravel-sized fragments, and mm-thin layers.
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The sediment types described above vary spatially in response to distance from the
continental margin and seafloor relief. Debris-flow deposits and sandy turbidites are dominant on
the floor of the Middle America Trench, whereas the seaward trench slope is covered by diatom-
rich hemipelagic mud with layers of light gray and black volcanic ash. Olive brown to dark olive
brown clay covers the slopes of Perdido outcrop; these clay-rich sediments typically contain Mn-
oxide nodules and fragments of basalt. The most common lithology in the warm crust area is
dark olive gray hemipelagic mud, although grayish brown clay-rich sediment also occurs locally
in association with altered basalt. The cold crust area displays greater lithologic variability due to
the effects of seafloor topography, bottom currents, and greater distance from sources of
terrigenous input. Caballito outcrop, located in the southwest part of the study area, is
surrounded by calcareous ooze; Mn-oxide crusts are common near core tops. Tengosed seamount
is surrounded largely by diatom-rich hemipelagic mud except on the southwest side, which
contains olive brown clay. Dorado outcrop also shows lithologic variability, with hemipelagic
mud along the base and southwest slope, and highly altered yellowish brown clay (locally
zeolitic) and Mn-oxide on the northwest slope.

Two kinds of physical properties samples were collected form selected cores: 304
samples were collected from 13 gravity and piston cores for index properties determination.
These samples were 30-50 cc in volume and were collected soon after the cores were split,
generally at 10-cm spacing, placed in pre-weighted and pre-numbered vials, and sealed with
parafilm in ziplock bags. These samples were stored with wet sponges (to help maintain humid
conditions in the ziplock bags) in a refrigerator during the cruise, then hand-carried back to
UCSC in coolers with blue ice for analysis. These samples will be analyzed for water content,
grain density, porosity, and bulk density.

In addition, 13 whole round samples, 15-cm in length, were collected from 6 cores for
geotechnical analysis to determine permeability and consolidation properties. These samples
were capped, taped, waxed, and stored cooled and upright. They were also carries back to UCSC

in coolers and are now in storage in a cold room awaiting testing in the lab.

V1. Geochemistry

The geochemical portion of TicoFlux II consisted of 62 gravity cores, three piston cores,
and two hydrocasts (Table V-1). These activities were conducted during 22 sessions that lasted

from 3 to 15 hours with an average length of 11 hours. Twelve primary seafloor features were
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targeted, chosen in part based on seismic images and heat flow data acquired during TicoFlux I
and II. Locations such as elevated basement features with relatively thin sediment coverage, or
within a tapering sediment section adjacent to seafloor topographical highs, were prime coring
targets. In addition, features with an abrupt increase in heat flow near their perimeters were
selected because these are likely sites where formation fluids may vent from basaltic basement.

Sediment from these cores were described and sampled. A portion of the sampling
program was focused on the extraction of pore waters. Three to twelve sediment sections (each
about 3 to 4 cm in length) from all of the cores that contained sediment were placed in 85 mL
centrifuge bottles, cooled to 2 to 4°C by placing them in a freezer for 30 minutes, and centrifuged
at 13,000 rpm for 5 minutes. Fluids were extracted from these centrifuged sediments, filtered and
aliquoted into several different containers. Several chemical analyses were conducted at sea (pH,
alkalinity, calcium, phosphate, chlorinity and fluoride) on both pore waters and seawater
collected during the two hydrocasts, which provided a sample of bottom seawater. These
particular seaboard analyses aided our decisions at sea. A more comprehensive analytical
program will be performed ashore, including measurement of trace elements in seawater and "*C
dating.

Below we report preliminary results of the geochemical portion of the TicoFlux II coring
and hydrocast programs. We divided the discussion into three geographic sections: Near Trench,

Warm Crust, and Cold Crust. We also briefly describe the two hydrocasts.

A. Near Trench (five sites)

The first site that was cored was a La Misma outcrop, which is descending into the
trench. This feature shows evidence of faulting, clearly visible in the seismic record. Three
gravity cores (GC 01-03) were collected on this feature (Fig. V-2), but there was no sign of pore
water seepage in these cores (e.g., alkalinity and PO, increase with depth). The Perdido outcrop
and an adjacent outcrop, on the triple junction trace, were targed by GC 04-10 (Fig. V-3). Once
again there was no sign of pore water seepage, but some basalt was recovered. The southeastern
sides of these outcrops are likely exposed basalt and are very steep. Later in the cruise a heat
flow survey was conducted near and on this feature. The results are consistent with bottom
seawater entering into the feature, therefore it is not surprising that we did not observe pore

water seepage at this site.
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The third site that we cored is the “high heat high” site from last year (Fig. V-10). This
site is located over and close to a deep basement reflector (fault?) that can be traced to the
sediment-basalt interface, which is about 75 m below the seafloor. Here the composition of the
formation fluids is highly altered and similar to formation fluids from Baby Bare and DSDP
Hole 504B. Some distinct chemical differences exist between these fluids with the formation
fluids at this site, having much higher Ca and Li concentrations and lower Na concentrations. Six
gravity cores (GC 11, 12, 62-65) and one piston core (PC 44) sampled this site. One gravity core
and the piston core were positioned on the heat flow high determined from the heat flow survey
last year. Here pore waters seep upward at a rate of about 2.5 cm/yr, which is well above the rate
(0.5 cm/yr) that was determined from samples collected during TicoFlux I (Figure VI-1). The six
gravity cores in part define the extent of pore water seepage in this region. Six samples from the
piston core were placed in a glove bag. An aliquot from the deepest of these samples was stored
for "*C analysis. This core provides the data needed to better constrain the composition of the
fluid in basement, because of the faster seepage rate, in contrast to the cores from last year that
showed signs of reaction with the sediment as the formation fluid ascends..

A neighboring topographical high to the west also was cored (GC13 and 14). These cores
show signs of an altered fluid in basaltic basement; however, the seepage rate is too low for these
samples to be of much use for constraining basement fluid composition.

A fifth site in this area was cored (PC45). This site is located in the trench. The core was
positioned to determine if turbidites and volcanic ash are observed within the trench. The
volcanic layers provide a measure of timing and the magnitude of turbidite flows that may be
related to large seismic events. This core could help with a future proposal to examine the role of

turbidites in this setting.

B. Warm Crust (two sites)

Several sites were cored on the warm crust during TicoFlux I (Fig. V-4). One site clearly
showed evidence for pore water seepage through the sediment (TFI-GC23). This general area
was targeted to see if we could find a site with faster pore water seepage. Two new cores (GC15
and 16) were placed further up the slope, but seepage is slower at these sites. Two other targets
in the area were cored (GC 17 and 18), but neither site showed evidence for pore water seepage.
We then cored the site where TFI-GC23 was taken (GC 19), but found that seepage was less

vigorous. This indicates the extent of heterogeneity in seepage processes — the seafloor targets
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are likely to be relatively small, perhaps only a few tens to hundreds of meters on a side. We then
placed three more cores (GC20, 46, and 47) around GC 19 (TFI-GC 23 from last year) to try to
locate a site with faster pore water seepage. We placed PC 48 where we thought seepage might
be the most vigorous. Six sediment samples from this core were placed in a nitrogen atmosphere
for sampling. Unfortunately this core did not have the fastest pore water seepage (Figure VI-2).
Thus the best samples of formation fluids from this area that are least affected by reaction with

sediment during ascent are those from TFI-GC23, which was collected last year.

C. Cold Crust (five sites)

The first two sites that were cored in the Cold Crust region were ones that were targeted
last year, and both contain carbonate oozes. One of the cores from last year (TFI-GC09) was
consistent with pore water seepage and thus this site was heavily cored during TicoFlux II. Ten
cores were placed on this site (GC 21, 22, 25-32) including the site where TFI-GC09 was cored
last year (Fig. V-6). What we believed was pore water seepage last year may have been a result
of diagenetic reactions. These cores clearly show an increase in Ca with depth and a decrease in
phosphate and alkalinity, which is consistent with a connection with basement fluids. However,
none of the profiles are clearly ones with pore water seepage of more than several mm/yr.
Similarly, results from the two cores (GC 23 and 24) collected on a nearby feature do not
indicate the significant pore water seepage.

The Dorado outcrop, a feature similar in size to Baby Bare on the flank of the Juan de
Fuca ridge, was targeted because of its size and elevated heat flow as one approaches the feature.
Here we placed eleven cores (GC33-43) to locate sites of pore water egress (Fig. V-7). One of
the cores hit a site where pore water seepage is evident, based on decreases in phosphate and
alkalinity with depth (Figure VI-3). This site (GC40) was later targeted by three additional cores
(GC 49-51), each with evidence for pore water seepage. Only one core (GC 50, heat flow of 1.0
W/m?) was long enough to place a section of sediment into a glove-bag for sampling in a
nitrogen atmosphere. A sample was collected and an aliquot was saved for **C dating. Two
markers were deployed at this site to help guide future (potential) submersible or ROV
operations. These markers consist of a 3-pound dive weight, a 3-foot length of line, a white
bucket lid with a number engraved in it, and a block of syntactic foam, also with a number on it.

We used marker 1 on GC50 and marker 2 on GC51.
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The large Fuente outcrop was also targeted during TicoFlux II. Six cores were dropped
on this site (GC 52-57). Even though a heat flow of more than 1.1 W/m® was measured at one of
the core sites (GC54), there was no evidence found for seepage of a fluid significantly different
from seawater.

A single gravity core (GC58) was taken on a sediment slump between a seamount and the
section of the seamount that broke off. This core had carbonate ooze at the base that was
overlain by green-colored clays. This ooze also contained green clay intermixed with the
carbonates, presumably a product of the slide. No seepage was evident at this site.

Another small feature was targeted (GC 59-61). This feature was a buried basement high
where the sediment thins to less than 75 m. To the north of this line is a topographic high that is
30 m higher. This site also was targeted. A heat flow transect reveals almost uniform values
around 100 mW/m’, indicating that this site does not likely have pore water seepage. None of

these cores shows signs of pore water seepage.

D. Hydrocasts

Two hydrocasts were taken in the cold plate region. Two 5-L nisken bottles with internal
plastic-coated springs were used. These bottles were positioned 85 and 100 m above the seafloor
when they were tripped with a messenger. Four 125-ml bottles were filled and later filtered.
These samples provide a measure of bottom water concentrations and a means for assessing

quality control of chemical analyses.
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Figures and Tables

Figure I-1. Overview map of TicoFlux II field area and survey coverage showing regional
tectonic boundaries. Individual survey components are shown in later figures.

Figure I-2. Contour map of field area showing major tectonic boundaries and selected
bathymetric features with informal names.

Table II-1. Summary of TicoFlux II (VANCO02) operations.

Table III-1. Seismic survey times and data backup parameters.

Figure III-1. TicoFlux II seismic line locations and major tectonic boundaries.
Figure HI-2. Track line for seismic survey 1.

Figure III-3. Track line for seismic survey 2.

Figure III-4. Track line for seismic survey 3.

Figure III-5. Track line for seismic survey 4.

Figure ITI-6. Track line for seismic survey 5.

Figure III-7. Track line for seismic survey 6.

Figure I1I-8. Heat flow station HFO1 located on seismic TF1-Line 11.
Figure 1I1-9. Heat flow station HF02, located on seismic TF2-Line 02.
Figure III-10. Heat flow station HF03, located on seismic TF1-Line 13.
Figure I1I-11. Heat flow station HF04, located on seismic TF2-Line 18.
Figure ITI-12. Heat flow station HFOS, located on seismic TF2-Line 23b.
Figure III-13. Heat flow station HF06, located on seismic TF1-Line 04.
Figure I1I-14. Heat flow station HFQ7, located on seismic TF2-Line 26/31.
Figure III-15. Heat flow station HFO08, located on seismic TF2-Line 28.
Figure I1I-16. Heat flow station HFQ9, located on seismic TF1-Line 04.
Figure III-17. Heat flow station HF10, located on seismic TF2-Line 5a.

Figure I1I-18. Heat flow station HF11, located on seismic TF2-Line 25.
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Figure III-19. Heat flow station HF12, located on seismic TF2-Line 27.

Figure II11-20. Heat flow station HF13, located on seismic TF2-Line 27.

Figure III-21. Heat flow station HF14, located on seismic TF2-Line 33a.

Figure III-22. Heat flow station HF15, located on seismic TF2-Line 33.

Figure 111-23. Heat flow station HF16, located on seismic TF2-Line 26.

Figure II1-24. Heat flow station HF17, located on seismic TF1-Line 03.

Table IV-1. Summary of multipenetration station targets, times and measurements.

Table IV-2. Summary of multipenetration heat flow positions, values and nearest seismic points.
Heat flow values have not been corrected for instrument tilt, sedimentation or local bathymetry.

Table IV-3. Summary of autonomous temperature logger deployments and results.

Figure IV-1. TicoFlux I heat flow station locations. Individual station maps are drawn for regions
indicated with boxes.

Figure IV-2. Examples of data collected during four penetrations with PGC multipenetration heat
flow probe. Measurement interval is 10 s. There are 11 sediment thermistors and one bottom
water thermistor (value of latter remains relatively constant through penetration). Initial period of
temperature rise and equilibration follows penetration of the seafloor by the probe. Heat pulse is
fired after seven minutes in bottom with no change in elevation of probe. The instrument is left
to equilibrate for about 7 minutes after firing heat pulse, then is removed the seafloor. These four
examples illustrate a range of instrument responses. A. HF02, Penetration 3. Relatively high heat
flow (637 mW/m?*) and homogeneous sedimentary thermal properties. B. HF 10, Penetration 4.
Extremely low heat flow (<4 mW/m?) and homogeneous thermal properties. C. HF06,
Penetration 3. Hard sediments lead to partial penetration, with the shallowest thermistor exposed
to bottom water (note rapid re-equilibration following heat pulse) and the second shallowest
thermistor being positioned close to the seafloor. Variable sedimentary thermal properties. D.
HFO08, Penetration 2, moderate heat flow and homogeneous thermal properties.

Figure IV-3. Example of processed, multipenetration probe data. A. Estimated equilibrium
temperatures versus depth. All temperatures are relative to bottom water. Open symbols indicate
depths for temperatures based on assumption that shallowest measurement is at seafloor. Solid
symbols show apparent depths after requiring that thermal gradient pass through bottom water
temperature at the seafloor. B. Sediment thermal conductivity versus depth. Solid lines indicate
depth intervals over which conductivites are assumed to apply in calculating thermal resistances,
half way between successive measurements, except for the shallowest value, which is assumed to
apply up to the seafloor. Dashed line indicates thermal conductivity of shallow sediments
required to make best-fitting straight line in part C pass through zero. This is the effective
conductivity of the shallow sediment section, assuming that other conductivities and depth
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intervals are correct. C. Temperature versus cumulated thermal resistance (depth corrected for
differences in thermal conductivity). The slope of the best-fitting straight line that passes through
the data is the conductive heat flow.

Figure IV-4. Examples of data collected during four deployments of Antares outrigger probes.
Measurement interval is 5 s. There are various numbers of sediment thermistors and one bottom
water thermistor, the latter mounted along with a tilt sensor in the core weight. Initial period of
temperature rise and equilibration follows penetration of the seafloor by the core barrel and
sensors. There is no heat pulse, so data are interpreted based on thermal conductivities of
surrounding sediments as determined with the PGC tool, or from needle-probe analysis of
recovered core material. The instrument is left to equilibrate for about 7 minutes after firing heat
pulse, then is removed the seafloor. A. GC13. Relatively high heat flow (665 mW/m?), as
determined with four short probes. Note initial cooling followed by reheating by several probes.
B. GC37. Temperatures measured with two short probes and one long probe. The former have
much greater frictional heating upon penetration, while the latter has a thermal response more
consistent with a line source. C. GC54. This deployment included two long probes (deep) and
one short probe (shallow), but the latter did not penetrate the seafloor. Final estimated heat flow,
1.16 W/m?, is the highest determined during either TicoFlux I or TicoFlux II. D. PC44. Four long
probes delineate heat flow of 633 mW/m?.,

Figure IV-5. Contoured hydrosweep bathymetry with HFO1 measurement locations.
Figure IV-6. Contoured hydrosweep bathymetry with HF02 measurement locations.
Figure IV-7. Contoured hydrosweep bathymetry with HF03 measurement locations.
Figure IV-8. Contoured hydrosweep bathymetry with HFO4 measurement locations.
Figure IV-9. Contoured hydrosweep bathymetry with HFO5 and 16 measurement locations.

Figure IV-10. Contoured hydrosweep bathymetry with HF06, 09, 12, and 13 measurement
locations.

Figure IV-11. Contoured hydrosweep bathymetry with HFO7 and 08 measurement locations.
Figure IV-12. Contoured hydrosweep bathymetry with HF10 measurement locations.
Figure IV-13. Contoured hydrosweep bathymetry with HF11 measurement locations.
Figure IV-14. Contoured hydrosweep bathymetry with HF14 measurement locations.
Figure IV-15. Contoured hydrosweep bathymetry with HF15 meésurement locations.
Figure IV-16. Contoured hydrosweep bathymetry with HF17 measurement locations.

Figure [V-17. MAPR data from GCO1-03.
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Figure IV-18. MAPR data from GC04-07.

Figure IV-19. MAPR data from GC16-19.

Figure IV-20. MAPR data from GC20.

Figure IV-21. MAPR data from GC21-24.

Figure IV-22. MAPR data from GC33-36.

Figure IV-23. MAPR data from GC38-40.

Figure IV-24. MAPR data from GC49-51.

Figure IV-25. MAPR data from GC52-54.

Figure IV-26. MAPR data from GC55-57.

Table V-1. Summary of core types, locations, times and recovery.

Figure V-1. TicoFlux I coring locations.

Figure V-2. Contoured seabeam bathymetry with locations of cores GC01-03.

Figure V-3. Contoured seabeam bathymetry with locations of cores GC04-10.

Figure V-4. Contoured seabeam bathymetry with locations of cores GC15-20, 46-48, PC438.
Figure V-5. Contoured seabeam bathymetry with locations of cores GC23-24.

Figure V-6. Contoured seabeam bathymetry with locations of cores GC21-22, 25-32, 52-57.
Figure V-7. Contoured seabeam bathymetry with locations of cores GC33-43, 49-52.
Figure V-8. Contoured seabeam bathymetry with locations of cores GC59-61.

Figure V-9. Contoured seabeam bathymetry with locations of cores GC58.

Figure V-10. Contoured seabeam bathymetry with locations of cores GC11-14, 62-65, PC44.
Figure V-11. Contoured seabeam bathymetry with locations of cores PC45.

Figure V-12. Lithological logs of cores GCO1-GCO09.

Figure V-13. Lithological logs of cores GC10-19.

Figure V-14. Lithological logs of cores GC20-29.
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Figure V-15. Lithological logs of cores GC30-39.
Figure V-16. Lithological logs of cores GC40-49.
Figure V-17. Lithological logs of cores PC44, 45, 48.
Figure V-18. Lithological logs of cores GC50-59.
Figure V-19. Lithological logs of cores GC60-65.

Figure [V-1. Calcium concentrations in pore waters from cores that surround the “high heat flow
area” located in 2001 are shown as a function of depth. Several modeled profiles are included to
illustrate the range of pore water seepage rates through the sediment. Note the high Ca

concentrations at depth consistent with a highly altered seawater in the basaltic basement below.

Figure IV-2. Calcium concentrations in pore waters from cores that surround Core 23, collected
in 2001, are shown as a function of depth. These cores were collected on the warm crust.
Several modeled profiles are included to illustrate the range of pore water seepage rates through
the sediment. Note the high Ca concentrations at depth relative to the seawater concentration, but
the concentrations are much less than that observed in the “high heat flow area”. The fluids in
basement however are still highly evolved seawater. The best samples, with the fastest upwelling
seepage speeds, are from 2001. We could not duplicate this result during TicoFlux II.

Figure IV-3. Phosphate concentrations in pore waters from cores on the Baby Bare-sized feature
in the cold crust region are shown as a function of depth. Modeled profiles indicating seepage
are not included because of the complexities of adding a reaction term to the advection-diffusion
equation. This will be completed ashore. The cores with upward seepage are those with
phosphate concentrations less than the seawater value (about 2.9 umol/kg). These fluids have Ca
concentrations that are identical to bottom seawater and alkalinities that are equal to or slightly
less than the bottom seawater value.
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Table III-1. Ticoflux 2 Seismic Lines: Start and End points of each line.

Line 1
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1 1 1 01 O O 7000 1000200225517 4 49
883 4 883 01 0 O 7000 1000200225519 32 52

Line 3
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
884 1 884 11 0 0O 7000 1000200225521 5 10
1408 4 1408 41 O 0O 7000 1000200225522 55 10

Line 5a
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1409 1 1409 11 0 0 7000 1000200225522 55 56
3759 4 3759 41 0 0 7000 10002002256 5 55 44

Line 5b
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
3760 1 3760 01 0 0O 7000 10002002256 6 17 41
3970 4 3970 O 1 0 0 7000 10002002256 6 52 41

Line 6
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
3971 1 3971 01 0O O 7000 10002002256 6 52 51
5046 4 5046 01 O 0O 7000 1000200225610 9 35

Line 7
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
5047 1 5047 01 0 0 7000 1000200225610 9 45
5438 4 5438 01 0 0 7000 1000200225611 32 9

Line &
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
5439 1 5439 11 0 0 7000 1000200225612 8 43
7713 4 7713 4 1 0 0 7000 1000200225618 37 37

Line 10
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
7714 1 7714 11 0 0 7000 1000200225619 27 27
10271 4 10271 41 0O 0O 7000 10002002257 2 34 38

Line 12
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
10273 1 10273 11 0 O 7000 10002002256 3 44 13
10977 4 10977 41 0 0 7000 10002002256 5 41 33

Line 13
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
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Table 11I-1. Ticoflux 2 Seismic Lines: Start and End points of each line.

10978 1 10978 11 0 O 7000 10002002256 5 41 43
12119 4 12119 41 0 0O 7000 10002002256 10 26 16

Line 14
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1 1 1 01 0 0 7000 1000200225910 38 55
1151 4 1151 01 O O 7000 10002002259 13 55 48

Line 15
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1159 1 2388 11 -127 3000 4001 1000200225914 17 13
1408 4 2690 1 1 23 3000 4001 10002002 259 14 58 43

Line 16
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
1471 1 2763 1 1 -127 3000 4001 10002002 259 15 29 42
2204 4 3646 11 23 3000 4001 1000200225917 31 51

Line 17
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
2205 1 3643 1 1 -127 1000 6001 1000 2002259 17 54 26
2991 4 4589 1 1 23 1000 6001 1000200225920 5 26

Line 18
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
2992 1 4588 1 1 -127 2000 4001 10002002 259 20 14 42
3794 4 5553 11 23 2000 4001 1000200225922 29 1

Line 19
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1 1 996 11 -271 1000 6001 10002002 262 12 34 21
1016 4 2352 11 -121 1000 6001 1000200226215 42 7

Line 21
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1117 1 3229 11 -271 1000 6001 1000200226216 6 33
2523 4 6044 1 1 -121 1000 6001 1000200226220 26 39

Line 22
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
2524 1 4360 1 1 -271 4000 300! 1000 2002 26220 36 19
3690 4 5918 1 1 -121 4000 3001 10002002263 Q0 6 11

Line 23a
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
3691 1 5915 11 -271 1000 6001 10002002263 0 6 22
4457 4 6939 1 1 -121 1000 6001 10002002263 2 24 14
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Table III-1. Ticoflux 2 Seismic Lines: Start and End points of each line.

Line 23b
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
4459 1 6939 1 1 -271 2500 4001 10002002263 4 56 41
5275 4 8030 1 1 -121 2500 4001 10002002263 7 23 32

Line 24
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
5276 1 8029 1 1 -271 3000 4001 10002002 263 7 34 48
6268 4 9355 11 -121 3000 4001 10002002 263 10 33 21

Line 25
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
6269 1 9352 11 -271 3000 4001 10002002263 10 47 4
6491 4 9651 11 -121 3000 4001 10002002263 11 27 1

Line 26
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
6492 1 9651 1 1 -271 1000 6001 1000200226311 37 3
7577 4 11100 1 1 -121 1000 6001 1000200226314 52 20

Line 27
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
70 1 1088 1 1 -271 1000 6001 1000 2002 267 4 48 10
693 4 1922 11 -121 1000 6001 1000 2002 267 6 40 19

Line 28
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
694 1 1920 1 1 -271 1000 6001 10002002267 6 54 44
2056 4 3739 1 1 -121 1000 6001 1000 2002 267 10 59 53

Line 29
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
2057 1 3737 1 1 -271 3000 4001 1000200226711 46 7
3611 4 5812 1 1 -121 3000 4001 10002002267 16 25 49

Line 30
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
3612 1 5810 1 1 -271 3000 4001 1000 2002 267 16 32 10
4159 4 6542 1 1 -121 3000 4001 10002002 267 18 10 37

Line 31 '

SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
4160 1 6541 1 1 -271 1000 6001 10002002 267 18 16 36

4942 4 7587 1 1 -121 1000 6001 10002002 267 20 37 21

Line 32

Page 3 of 4



Table II-1. Ticoflux 2 Seismic Lines: Start and End points of each line.

SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1 1 99 11 -271 1000 6001 10002002271 2 28 47
489 4 1650 1 1 -121 1000 6001 1000 2002 271 3 56 37

Line 33
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
490 1 1648 1 1 -271 1000 6001 10002002271 4 26 52
1940 4 3584 1 1 -121 1000 6001 10002002271 8 47 51

Line 34
SHOT TR RP TR ID RANGE DELLAY NSAMPS SI YR DAY HR MIN SEC
1941 1 3582 11 -271 3000 4001 10002002271 8 59 48
2093 4 3788 11 -121 3000 4001 10002002271 9 27 10

Line 35
SHOT TR RP TR ID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
2004 1 3786 1 1 -271 4000 3001 10002002271 9 41 24
3607 4 5806 1 1 -121 4000 3001 1000200227114 13 44

Line 36
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
3608 1 5805 1 1 -271 3500 3001 10002002 271 14 16 54
4862 4 7480 1 1 -121 3500 3001 10002002271 18 2 47

Line 37
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
I 1 996 11 -271 4000 3001 1000200227415 11 4
816 4 2086 1 1 -121 4000 3001 10002002274 17 38 29

Line 38a
SHOT TR RP TRID RANGE DELAY NSAMPS SI YRDAY HR MIN SEC
1036 1 2376 1 1 -271 1000 6001 1000200227418 21 4
1990 4 3651 11 -121 1000 6001 1000200227421 12 57

Line 38b
SHOT TR RP TRID RANGE DELAY NSAMPS SI YR DAY HR MIN SEC
1991 1 3649 1 1 -271 1000 6001 1000200227421 17 11
2145 4 3857 11 -121 1000 6001 1000200227421 44 54

Page 4 of 4
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Table V-1. Core locations, recovery, and figure cross-reference.

Core Depth Latitude Longitude Length
Identification ~ (m) (°N) ("W) (cm) Lithologic Summary Location map

MV0209-01GC 3400  9°40.997 86°23.741 205 Dark olive gray hemipelagic mud; homogeneous Fig. V-2

MV0209-02GC 3400  9°41.130 86°23.620 358 Dark olive gray hemipelagic mud; white ash bed
(graded) at 115-120 cm; bioturbated black ashat  Fig v-2
150-164 cm

MV0209-03GC 3575 9°41.646 86°23.027 353 Dark olive gray hemipelagic mud; irregular lenses of
ash at 65, 86, 120 cm; white ash layer at 253-256  Fig. v-2
cm; mud is unsually well compacted

MV0209-04GC 3114  9°18.640 84°11.881 355 Dark olive gray hemipelagic mud; white ash layer at
292-303 cm

MV0209-05GC 3250 9°18.650 86°11.260 379 Olive brown clay with pebbles and granules of
basalt (0-62 cm); dark olive gray hemipelagic mud;  Fig. v-3
lenses of black volcanic ash at 134, 275 cm

MV0208-06GC 3250 9°18.649 86°11.108 10 Core catcher only: dark olive gray hemipelagic mud

Fig. V-3

MV0209-07GC 3250 9°20.451 86°10.439 353 Dark olive gray hemipelagic mud; homogeneous Fig. V-3

MV0209-08GC 3250 9°20.046 86°11.004 35 Core catcher only: dark olive gray mud mixed with
basalt and lithified mudstone fragments (0-6 cm);
light olive brown clay (6-30 cm); very dark grayish ~ Fig. V-3
brown mud mixed with basalt fragments (30-35 cm)

MV0209-09GC 3250 9°19.920 86°10.888 10 Core catcher only: gravel of indurated mudstone,

Mn-oxide, altered basalt Fig. v-3
MV0209-10GC 3250  9°18.955 86°10.847 113 Olive to olive-gray clay (20-31, 90-113 cm); dark Fig. V-3

olive gray hemipelagic mud (31-90 cm) )
MV0209-11GC 3300  9°40.767 86°34.268 375 Dark olive gray hemipelagic mud; white ash layer at Fig. V-10

190 cm; local clay-rich bands

MV0209-12GC 3300 9°40.793 86°34.307 355 Dark olive gray hemipelagic mud; thin layers of
indurated material may be Mn oxide; sampled for Fig. V-10
physical properties

MV0209-13GC 3145 9°36.444 86°39.078 124 Dark olive gray hemipelagic mud; homogeneous Fig. V-10

MV0209-14GC 3160 9°36.395 86°39.144 390 Dark olive gray hemipelagic mud; light gray ash
layer at 338-340 cm; sampled for physical Fig. V-10
properties

MV0209-15GC 2810  8°29.942 85°58.173 130 Dark olive gray hemipelagic mud; homogeneous Fig. V-4

MV0209-16GC 2755  8°29.835 85°58.062 371 Dark olive gray hemipelagic mud; homogeneous; Fig. V-4
sampled for physical properties 9

MV0209-17GC 2830  8°32.215 85°54.249 415 Dark olive gray hemipelagic mud; homogeneous Fig. V-4

MV0209-18GC 2844  8°31.819 85°54.895 93  Grayish brown clay; indurated sediment in core
catcher; altered basalt and Mn oxide at 36-50 cm

MV0209-19GC 2835  8°29.797 85°58.022 363 Dark olive gray hemipelagic mud; thin layer of black
volcanic ash at 348 cm

MV0209-20GC 2780  8°29.751 85°58.050 356 Dark olive gray hemipelagic mud; homogeneous Fig. V-4

MV0209-21GC 3035  8°44.202 87°12.749 209 Light olive brown clay (0-72 cm); olive brown
carbonate-bearing mud with light olive brown

Fig. V-4

mottling (76-141 cm); dark olive gray hemipelagic Fig. V-6
mud (141-209); white ash layer at 76 cm
MV0209-22GC 3020 8°44.348 87°12.642 73 Very light gray nannofossil chalk; Mn-oxide Fig. V-6
MV0209-23GC 2875  8°37.006 87°16.799 10  Core catcher only: Mn-oxide nodule Fig. V-5
MV0209-24GC 2860 8°37.251 87°17.069 292 Yellowish brown foraminiferal ooze; Mn-oxide .
nodule at 20-30 cm; light gray mottling Fig. V-5

MV0209-25GC 3050  8°44.550 87°12.900 124 Light olive brown nanno-bearing mud (22-79 cm),
very light gray nanno ocze (79-124 cm); fragments  Fig. v-6
of Mn oxide
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Table V-1. Core locations, recovery, and figure cross-reference.

Core Depth Latitude Longitude Length
Identification ~ (m) (°N) (*W)  (cm) Lithologic Summary Location map
MV0209-26GC 3140  8°44.518 87°12.820 342 Light olive brown clay (18-25 cm); light gray nanno-
bearing mud (25-210 cm); very light gray nanno .
ooze (210-342 cm): brown volcanic ash at 48-50  Fi9- V-6
and 86 cm
MV0209-27GC 3030  8°44.445 87°12.749 101 Very light gray nannofossil ooze; black gravel and Fia. V-6
granules at 52-56 g. V-
MV0209-28GC 3030  8°44.430 87°12.873 375 Light brown nanno-bearing mud (13-34 cm); very Fia. V-6
light gray nanno ooze (43-375 cm) 9. V-
MV0209-29GC 3020 8°44.236 87°12.709 165 Olive brown clay; homogeneous Fig. V-6
MV0209-30GC 3030 8°44.200 87°12.500 33 Very light gray nannofossil coze Fig. V-6
MV0209-31GC 3060  8°44.161 87°-12.440 353 Very light gray nannofossil ooze; local burrows filled Fig. V-6
with greenish-black material 9. V-
MV0209-32GC 3040  8°44.579 87°12.775 342 Light olive brown clay (12-129 cm); light gray nanno-
bearing mixed sediment (129-182); very light gray Fig. V-6
nannofossil ooze (182-343 cm)
MV0209-33GC 3030  9°05.252 87°05.777 380 Dark olive gray hemipelagic mud; white volcanic ash Fiq. V-7
layer at 58-64 cm 'g. V-
MV0209-34GC 3030 9°05.195 87°05.845 10 Core catcher only: Mn oxide nodules Fig. V-7
MV0209-35GC 3124 9°05.235 87°05.805 372 Olive hemipelagic mud (15-30 cmy); dark olive gray
hemipelagic mud (30-372 cm); white volcanic ash  Fig. v-7
layer at 54-57 cm
MV0209-36GC 3075  9°06.306 87°05.650 373 Dark olive gray hemipelagic mud; white volcanic ash Fiq. V-7
layer at 229-234 cm g. V-
MV0209-37GC 3110 9°05.215 87°05.826 379 Olive clay-rich mud (13-47 cm); dark olive gray
hemipelagic mud (47-379 cm); white ash patches at Fig v-7
17 ¢m, 27 cm; black ash layer at 280 cm )
MV0209-38GC 3206 9°04.969 87°05.992 333 Olive clay-rich mud (13-47 cm) becomes darker at
top; dark olive gray hemipelagic mud (47-379 cm);, Fig. V-7
Mn-oxide nodules and chips
MV0209-39GC 3182  9°05.012 87°05.957 123 Light yellowish brown clay-rich mud; scattered Mn- Fiq. V-7
oxide nodules g- V-
MV0209-40GC 3140  9°05.046 87°05.931 227 Light yellowish brown clay-rich mud; scattered Mn- Fig. V-7
oxide nodules and Mn-coated rock fragments 9-
MV0209-41GC 3102 9°05.085 87°05.907 5  Core catcher only: fragments of basalt with Mn- Fiq. V-7
oxide coating; dark brown mud 9
MV0209-42GC 3140 9°04.854 87°05.792 243 Light olive brown clay-rich mud; scattered fragments
of basalt and Mn-oxide; sampled for physical Fig. V-7
properties
MV0209-43GC 3140 9°04.884 87°05.771 143 Light olive brown clay-rich mud; Mn-oxide nodule at
surface; basalt fragments at 60, 105 cm, core Fig. V-7
catcher
MV0209-44GC 3306  9°40.797 86°34.309 300 Dark olive gray hemipelagic mud; homogeneous Fig. V-10
MV0209-44PC 3314  9°40.797 86°34.309 694 Dark olive gray hemipelagic mud; homogeneous; Fia. V-10
sampled for physical properties 9
MV0209-45GC 4780  9°51.944 86°21.282 91 Dark gray sand with indurated mudstone clasts,
normal size grading; dark olive gray hemipelagic Fig. V-11
mud
MV020945PC 4780 9°51.944 86°21.282 712 Dark gray sand with indurated mudstone clasts,
normal size grading; dark gray debris flow and
mudflow deposits; dark olive gray hemipelagic mud; Fig. v-11
volcanic ash layer with normal grading (500-510
cmy); sampled for physical properties
MV0209-46GC 2840  8°29.810 85°58.001 425 Dark olive gray hemipelagic mud; homogeneous Fig. V-4
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Table V-1. Core locations, recovery, and figure cross-reference.

Core Depth Latitude Longitude Length
Identification  (m) (°N) (*W) (cm) Lithologic Summary Location map

MV0209-47GC 2840  8°29.784 85°58.001 426 Dark olive gray hemipeiagic mud; thin black ash Fiq. V-4
layer at 375 cm g- V-

MV0209-48GC 2820  8°29.799 85°58.009 290 Dark olive gray hemipelagic mud; homogeneous Fig. V-4
MV0209-48PC 2820  8°29.799 85°58.009 843 Dark olive gray hemipelagic mud; homogeneous; Fig. V-4
sampled for physical properties 9. V-
MV0209-49GC 3140  9°05.004 87°05.932 55 Yellowish brown clay; scattered Mn-oxide and Fig V-7
fragments of basalt 'g. V-
MV0209-50GC 3142 9°05.044 87°05.929 158 Mottled mixture of dark brown clay-rich zeolitic mud
and yellowish brown mud; dark yellowish brown
zeolitic clay (122-158 cm); layers and patches of Mn- Fig. V-7
oxide; scattered fragments of glassy basalt
MV0209-51GC 3140 9°05.046 87°05.930 43 Surface crust and scattered patches of Mn-oxide; Fig. V-7

dark yellowish brown to yellowish brown clay
MV0209-52GC 3150 8°49.175 87°10.106 369 Dark olive gray hemipelagic mud; homogeneous Fig. V-6
MV0209-53GC 3080 8°49.116 87°10.148 4 Core catcher only: Mn-oxide in core cutter; top of

core weight trapped fist-sized piece of basalt, Fig. V-6
hemipelagic mud

MV0209-54GC 3125 8°49.145 87°10.126 194 Dark olive gray hemipelagic mud (37-53, 128-194
cm); olive brown clay-rich mud (53-128 cm); Fig. V-6
gradational contact

MV0209-55GC 3213 8°47.340 87°11.820 365 Olive brown clay-rich mud; scattered Mn-oxide

nodules Fig. V-6
MV0209-56GC 3170 8°47.387 87°11.770 257 OQlive brown clay-rich mud; scattered Mn-oxide Fig. V-6
nodules, Mn crust in core catcher 'g. V-

MV0209-57GC 2750  8°47.418 87°11.737 2  Core catcher only: Mn-oxide crust Fig. V-6

MV0209-58GC 3000 9°26.601 87°03.047 180 Dark olive gray hemipelagic mud; homogeneous;
bottom of core cutter contains debris-flow deposit  Fig. v-9
with fragments of indurated chalk

MV0209-59GC 3140 9°10.219 87°15.493 378 Dark olive gray hemipelagic mud; foram sand (149-
158 cm); patches of white volcanic ash (260-280 Fig. V-8
cm)

MV0209-60GC 3120  9°10.529 87°15.578 285 Dark olive gray hemipelagic mud; white volcanic ash Fig. V-8
(156-162 cm), black volcanic ash (173 cm) 9. V-
MV0209-61GC 3116  9°10.474 87°15.625 162 Dark olive gray hemipelagic mud; white volcanic ash Fig

(132-136 cm) V-8
MV0209-62GC 3340 9°40.890 86°34.445 358 Dark olive gray hemipelagic mud; light gray volcanic

ash at 190-196 cm; black ash layer at 284 cm Fig. V-10
MV0209-63GC 3340  9°40.922 86°34.316 410 Dark olive gray hemipelagic mud; light gray volcanic

ash at 260-270 cm, black ash layer at 332 cm Fig. V-10
MV0209-64GC 3320 9°40.840 86°34.200 337 Dark olive gray hemipelagic mud; black volcanic ash Fig. V-10

at314cm
MV0209-65GC 3340 9°40.672 86°34.373 386 Dark olive gray hemipelagic mud; homogeneous Fig. v-10
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