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I. Introduction

This report provides an operational and scientific overview of the TicoFlux I expedition
(Maurice Ewing cruise EW0104) to the incoming plate along the Costa Rica margin, eastern
equatorial Pacific Ocean. This report was prepared during and at the end of scientific operations, so
all analysis is preliminary. Greater detail regarding background, motivation and strategy is
presented in the NSF proposal that funded this work, along with references to previous work in
this area.

The TicoFlux I expedition was highly successful, both operationally and scientifically. We
had some difficulties with equipment, but achieved all primary objectives. This success is directly
attributable to the skill and dedication of the ship’s crew and technical support staff and the
outstanding facilities available on the Maurice Ewing. This report ends with some observations and

recommendations concerning shipboard facilities and personnel.

A. Scientific Objectives

The TicoFlux I expedition was the first part of a field, lab and modeling program to
investigate the nature of hydrothermal activity and its influence on lithospheric and subduction
processes offshore of the Nicoya Peninsula, Costa Rica margin. Field and lab components
comprise seismic, swath-mapping, heat flow, and geochemistry (coring) programs on 20-25 Ma
lithosphere seaward of the Middle America Trench. These studies are to be based, in part, on data
and samples collected during two marine expeditions, one during Spring 2001 and a second (to be
scheduled) during 2002. Modeling components of this project includes numerical studies of the
incoming plate and of the subduction zone. Collectively, these studies will help to resolve: (1) the
nature and extent of hydrothermal circulation, and thus the likely thermal state and water content of
the crust before it enters the trench; (2) the influence of these conditions on subduction processes;
and (3) the significance of ridge-flank hydrothermal circulation for global solute fluxes. The field
area 1s ideal for this work because it contains a fundamental transition in the structural, thermal and
hydrogeologic state of the incoming plate. The region is the subject of numerous other studies
emphasizing elemental fluxes and the seismogenic zone, but fluid and thermal conditions within the
incoming plate are poorly understood. Considerable effort has focused on conditions and

processes landward of, and immediately adjacent to, the trench; we are focusing observational
efforts on a 120 nmi X 120 nmi (2° x 2°) region largely seaward of the trench (Fig I-1).

This work is intended to address these questions:
(1) What is the thermal state of the lithosphere being subducted below the Nicoya Peninsula?
(2) What are characteristic heat and fluid fluxes responsible for this thermal state, how does water

enter and exit the crust in this area, and what are the characteristic length scales of flow?
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(3) How do the thermal state, water content, sediment composition, and diagenetic state of the
incoming plate influence the mechanics of the subduction zone?

(4) What are the chemical implications of extensive fluid circulation within the incoming plate, both
to the subduction zone and to the overlying ocean, and how can these data be used to understand
global fluxes?

The TicoFlux I expedition included regional and local goals. We wanted to map out
regional crustal structures and define the various tectonic boundaries across the work area using a
combination of seismic, thermal and geochemical tools. We also hoped to determine the nature of
regional thermal conditions in basement within distinct seafloor areas. We planned to evaluate
whether various tectonic boundaries (ridge jump, propagator trace, triple-junction trace, fracture
zone, faults) were associated with thermal, chemical, seismic and hydrogeologic boundaries. We
also wanted to establish the nature of thermal and chemical variations around basement outcrops,
and evaluate directions and intensity of fluid flow within basement using thermal and chemical
tracers. Field and lab work will be complemented by modeling to help us understand and extend

these results to other areas.

C. Regional Setting

Costa Rica lies at the southern end of the Central American arc system, formed by
subduction of the Cocos Plate under the Pacific Margin. The surface manifestation of this
subduction - the Middle America Trench - has its southern end off southernmost Costa Rica, where
it intersects the Panama fracture zone. The regional tectonic setting of southeastern Central America
1s controlled by the convergence of the Cocos, Caribbean, and South American Plates. The oceanic
Cocos Plate subducts beneath the Caribbean Plate along the Middle American Trench at rates of 70
mm/yr off Guatemala to nearly 90 mm/yr off southern Costa Rica. The north-trending boundary
between the Cocos and Nazca Plates is the right-lateral Panama Fracture Zone. West of this
fracture zone is the Cocos Ridge, a trace of the Galapagos Hotspot, which subducts beneath
southern Costa Rica and northern Panama.

The Cocos plate offshore northern Costa Rica is 20-25 Ma (early Neogene) in age, as
interpreted on the basis of magnetic anomalies and other data. Drilling at ODP Site 1039 on Leg
170, near the axis of the trench, penetrated 180 m of diatom-rich hemipelagic claystones, with
interspersed ash layers, overlying about 200 m of nannofossil-rich carbonate ooze. The base of the
sedimentary section is a brown, metalliferous claystone, intruded by gabbroic sills. The oldest
sediment recovered at Site 1039 was 16.5 Ma.

The incoming plate offshore Costa Rica can be subdivided into tectonically-distinct
subregions (Fig. I-1). The region offshore of the northern Nicoya Peninsula has magnetic

anomalies that strike approximately N40W and was produced along the East Pacific Rise. Towards
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the middle of the Nicoya Peninsula there is a boundary across which the magnetic anomalies
abruptly switch orientation by ~90°, to N45E. This boundary is thought to separate crust formed at
the EPR from that formed at the Cocos-Nazca Spreading Center, making it the trace of the triple
junction, and also corresponds (at least, in part) to an abrupt difference in the relief of upper
basement, known as the “rough-smooth boundary” (RSB). Continuing to the southeast, there is
another, more subtle, realignment of magnetic anomalies, which corresponds near the trench to the
Fisher Ridge. The crust between the RSB and Fisher Ridge is referred to as the “smooth segment,”
while crust south of the Fisher Ridge is referred to as the “seamount segment”. As suggested by
the name, seamounts are much more common southeast of the Fisher Ridge than northwest of the
ridge, although the oceanic crust still has a normal thickness of 6-7 km.

In fact, the area of the TicoFlux I survey northwest of the triple junction trace (Fig. I-1) has
been known for some time to include significant areas of shallow water. It is identified on DMA
charts at “Guardian Bank” and includes numerous “shoals” and other areas of shallow water.
Bathymetry generated from a combination of satellite gravimetry and depth profiles prior to
TicoFlux I suggested that there were several large seamounts within the planned work area, and
some of these were targeted for mapping, seismic profiling, heat flow, and core sampling.

Although the transition in magnetic anomalies along the RSB is abrupt, the regional
transition in basement relief appears to be more gradual. One possible explanation for this change
in basement relief is that the orientation of the primary structural grain of the crust (as expressed by
the orientation of magnetic anomalies), varies north and south of the RSB relative to the orientation
of the subduction zone. To the northwest of the RSB, the magnetic anomalies are roughly parallel
to the trench, while to the southeast of the RSB, magnetic anomalies are roughly perpendicular to
the trench. This change in orientation of magnetic anomalies, and thus the structural grain of the
crust, may have profound implications for the fluid and thermal evolution of the plate.

Heat flow data within and near the study area collected prior to TicoFlux [ are sparse
(typical spacing of 60-120 km), but there is a clear trend in the distribution of values. North of the

RSB, heat flow is low (average = 31 mW/m?), whereas heat flow to the south of the RSB is
generally higher (average = 110 mW/m?2). The age contrast across the RSB is too small to account
for the observed transition in seafloor heat flow. The global average of measured heat flow for this
crustal age (20-25 Ma) is about 72 mW/m?, corresponding to a heat flow fraction
(Qobserved/expected) Of 0.67. This fraction indicates that, on average, 1/3 of heat flow through
oceanic lithosphere of this age is lost by advection. The heat flow fraction north of the RSB is
generally <0.25, suggesting an even larger fraction of advective heat loss, but the heat flow

fraction south of the RSB is generally >21.0. Hence, heat flow north of the RSB is low compared
to both lithospheric-conductive and global average values, whereas that south of the RSB is high
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compared to both lithospheric-conductive and global average values. The latter situation is
particularly unusual because most young-crust sites have heat flow significantly lower than that
predicted by conductive lithosphere models, presumably because advected heat loss is not

measured by heat flow probes.

II. Operational Summary
Table I-1 lists EW0104 operations, dates and times. The start of the port call in Colon,

Panama was intended to begin on the moming of 4/12/01 but was delayed until the afternoon while
the ship was at anchorage awaiting dock space. Scientists and crew were ferried out to the ship at
anchorage in the afternoon of 4/12, and the ship was brought to the dock at 4:00 pm local time.
Loading of scientific gear began immediately and continued until 9:00 pm. Loading continued the
following morning and afternoon, and the ship left the dock and headed for the locks at 5:00 pm on
4/13. Passage through to the Pacific Ocean was completed at 3:00 am on 4/14, and the ship got
underway for the work area after the canal crew left the ship.

The transit required 39 hours, and we stopped beyond the southern edge of the work area
to collect a single gravity core, to test the equipment and establish deck and lab protocols for
working with cored material. The seismic streamer and guns were deployed, and we began nine
days of seismic/hydrosweep/3.5-kHz surveying at 4.86 kts. The survey went well and generated
very good records of sediment and crustal structure and seafloor bathymetry. We had a computer
problem while crossing one of the regional tectonic boundaries, resulting in loss of about 60
minutes of seismic data (Line 9), but coverage along the seismic lines was otherwise virtually
complete. We learned after the survey was nearly over that we had not been receiving P-code GPS
positions during most of the survey because the P-code antenna had been accidentally turned
upsidedown on the roof of the A-deck winch shack. This resulted in degradation of navigation data
during the seismic survey, with most positions being based on C/A code GPS locations, giving an
uncertainty of 50-100 m rather than the anticipated P-code positioning uncertainty of 10-20 m.
Hydrosweep records were generally of good quality, although edited files yielded reliable data
within a swath only slightly greater in width than the water depth. XBTs were deployed and data
recorded twice during TicoFlux I, in the western and southeastern parts of the survey area, to
assist with processing of hydrosweep data. We also ran numerous additional small hydrosweep
“surveys” as we transited between coring and heat flow stations later in the cruise, to fill gaps and
complete coverage of specific targets.

After the seismic streamer was recovered, we moved to the next coring station and collected
four gravity cores in 12 hours, then proceeded with the first heat flow station, which lasted 27
hours. Coring operations (gravity and piston) were run from the starboard rail using the traw] wire

and winch, and heat flow operations were run from the fan tail using the 0.680 wire and traction
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winch. A 12-kHz pinger was attached to the wire for all heat flow and gravity coring operations
and was essential for determining instrument locations relative to the bottom because of problems
with wire-out indicators. Once the instruments were placed in the water, winch control was
transferred to the main lab. Coring and heat flow stations alternated in intervals of approximately
12 and 24 hours, respectively, with additional time occupied by transits and hydrosweep surveys.
We worked around the field area in a clockwise direction, starting near the western edge and
working towards the north and east, finally returning to the northeast and middle areas for the final
stations.

We had problems with the heat flow probe during stations HF-03 and HF-04, with the
thermistor tube breaking off at the support fin on the front of the lance. In each case, the probe was
returned to the ship and repaired. We attribute this problem to not waiting long enough after
moving the ship before making the next measurement, allowing the probe to drift too far behind the
ship. During subsequent stations we waited 20-40 minutes for the probe to swing back under the
ship after moving to a new measurement location, and we had no more problems with broken
thermistor tubes. The batteries in the pinger used to telemeter heat flow data were drained and had
to be replaced during station HF-07, requiring probe recovery and redeployment. We had to
recover the probe a second time after a crimped wire in the pinger shorted out against the wall of
the pressure case. We also had difficulty with the level wind mechanism on the trawl winch, the A-
deck sheave for the traction winch, and with metering of both winch systems (wire out, rate,
tension). Collectively, repair of the winch and gauge systems required about 24 hours over the
length of the expedition.

TicoFlux I ended at 8:20 am on 5/17 with completion of a short heat flow station in the
southeastern survey area. After recovering the gear, we transited to Balboa, Panama, arriving at
anchorage at 6:00 am on 5/19. All scientific equipment was offloaded during the day and evening
of 5/19, and most equipment was loaded into cargo vans for shipment back to the U.S.

II1. Seismic Reflection Surveys

The objectives of the seismic survey were to delineate basement geometry and sediment
thickness, determine the nature of subsurface crustal structures for lithosphere formed by East
Pacific Rise spreading and by Cocos-Nazca Ridge spreading, evaluate differences in seismic
velocities in upper basement, and support heat flow and coring operations. The seismic reflection
survey required 9.6 days of ship time, including deployment and recovery of the streamer and
guns. During the period of JD 107, 0245 (GMT) to JD 115, 0353 we obtained over 1800 km of
seismic data resulting from over 48,000 shots. The shots were generated with a 10-gun array and
were spaced 37.5 m apart. The hydrophone streamer array was 6000 m long and consisted of 480
channels spaced 12.5 m apart, giving a CDP spacing of 6.25 m and 80 fold subsurface coverage.
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Survey parameters and locations and times of individual lines are listed in Tables III-1, III-2 and
III-3. Locations of lines are shown in Figure III-1.

The streamer had been extensively repaired prior to our cruise, and QC observations
showed data collected after these repairs to be of high quality. No channels were consistently bad;
only one channel (51) showed consistent noise, but even that one was usable. A small fraction
(about 0.1%) of the shots were lost (Table III-3). Some additional shots were not recorded due to
problems with the P-code GPS antenna. Data were collected with the LDEO Syntron system on
3490 tapes and copied to DAT tapes for later processing. During acquisition, tapes were copied
and a stack was made of the near 120 channels using the SIOSEIS processing system, and a
continuous plot of the brute stack was produced on the Atlantek plotter. After each line was
completed, the stack was migrated with SIOSEIS and plotted. Because of the time involved in
migrating large data sets, most lines were migrated in sections of 40 km or less.

The results of the seismic survey were excellent overall, thanks to a combination of a
source array that gave a sharp seismic signature, a streamer array that recorded virtually all
channels well, and knowledge of the regional velocity structure that gave clear results with the
initial brute stack. After the heat flow lines were collected, 2 to 3 hour segments of seismic data
corresponding to the heat flow lines were printed page-sized (Figures III-2 to III-14), making it
easy to see the details of the lines at a glance. Heat flow locations and preliminary values are
plotted over the seismic data in these figures.

Following data acquisition, gathers were saved for most of the lines at an interval of 50
CDPs. Using a combination of SIOSEIS and Matlab, velocity analyses were carried out on a few
line segments, and some of these gave significantly improved subsurface images. Regionally there
is about 400-500 m of sediment covering a highly reflective basement. Drilling results from ODP
Site 1039 documented that the upper 150 m of sediments are composed of hemipelagic mudstone
and the lower section is largely pelagic nannofossil ooze. Each of Figures I1I-2 to 11I-14 shows
signs of tectonic activity within the plate. In most cases ridges and seamounts are not simply
draped with sediments, but they often show evidence of post depositional or syndepositional
deformation. Figures III-2 and III-7 show good examples of stratigraphic pinchouts and overlap.
In many cases the lowermost 0.15 s of strata appear to be deformed after they were deposited. The
well-layered middle part (pelagic ooze) appears to be deformed during deposition (for example, see
Figure III-11), and the upper hemipelagic layer generally covers the deformation. There are,
however, many examples of deformation extending through to the surface and clearly affecting the
hemipelagics (e.g., Figs. 11I-6, III-7, and III-10).

We show two examples of lines that are migrated after a full stack involving velocity
analysis. Figure ITI-15 is from the NW part of seismic Line 11 and images a clear example of a

reflection that cuts deeply through the oceanic crust, dipping at an angle of roughly 20 degrees to
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the NW. Such through-crustal dipping reflections are not common here, but they are seen on
parallel Lines 13 (Figure III-16) and 5 (Figure I1I-5). The dipping reflections in Figure III-16 are
not restricted to a single plane. In Figure I1I-5 the reflection is sinuous. All of these low-angle
reflections dip to the NW. A line crossing these at right angles shows deep crustal reflections that
appear horizontal at about 1.5 s beneath the sediment-crust interface, suggesting that Lines 5, 11
and 13 are essentially dip lines.

Several examples are seen of a mantle reflection. The most notable is at the north end of
Line 1, where a sharp reflection occurs 2 s beneath the sediment-crust interface. The seismic data
also indicate that sill intrusion may be common in this region. We base this inference on the
interpretation of seismic structure on these profiles and also on the fact that ODP Leg 170 bottomed
in sills at two locations, the only two to bring up rocks from oceanic basement. The seismic
structure indicates numerous regions where the base of the sediment section is a very smooth, high
amplitude reflection. In addition, there are a number of regions where signs of youthful uplift
occur (Fig. HI-17).

IV. Heat Flow Surveys

The TicoFlux I heat flow program comprised two main components. Most measurements
were made a 3.5-m, 11-thermistor, violin-bow heat flow system built and maintained at the Pacific
Geoscience Center by Earl Davis and colleagues. This system provided real-time (analog) telemetry
and in-situ thermal conductivity measurements. Internal power allowed stations to run 20-30 hours
when fully charged, and most stations consisted of 8-15 measurements separated by 1.0 nmi (1.9
km; Fig. IV-1).

The second part of the heat flow program was based on autonomous outrigger thermistor
probes banded to piston and gravity core barrels. These tools were developed through
collaboration between the scientists at University of Bremen (led by Heiner Villinger) and Antares,
a private company in Bremen, Germany. We also measured thermal conductivity at high resolution

using the needle probe method in a single, 5-m piston core.

A. Multipenetration Heat Flow Stations

Multipenetration heat flow measurements were made by lowering the heat flow probe into
the seafloor at 60 m/min. After a measurement was completed, the probe was raised to 600-2000 m
above the seafloor while the ship transited at 1-2 ks to the next site. Tool penetration was typically
followed by 7 minutes during which the thermistor tube was allowed to thermally equilibrate with
the surrounding sediments (Fig. IV-2). A calibrated heat pulse was then fired, and the thermal
response of the thermistor tube was monitored to determine in-situ thermal conductivity.

Multipenetration heat flow data were parsed into individual penetration files and processed using
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SlugHeat, a Matlab program based on the hfred/hflow set of processing programs (Fig. IV-3).
Additional analysis will be required to finalize the heat flow values listed in this report (Table IV-
1), but values are unlikely to change by more than a few percent as a result of reanalysis. No
corrections have been applied for at this stage for instrument tilt (generally less than 5°),
sedimentation, or local topography. We attempted 130 heat flow penetrations during TicoFlux I
and completed 127 successful measurements (Table IV-1, Figure IV-1). Contour maps show the
locations of heat flow measurements (Figs. IV-4 to IV-13) and data are plotted above seismic
reflection profiles in Figs 1II-3 to III-14).

Heat flow station HFO1 is collocated with seismic Line 7 and crosses a local basement high
and outcrop (Fig. IV-4). To the northwest of the basement high, heat flow values are 50 to 60 mW
m-2. To the southeast of the basement high heat flow values drop to 29 and 24 mW m-2, and then

increase abruptly to 89 and 94 mW m-2. This change in heat flow may be a manifestation of the
transition between the warm and cold seafloor areas, or it may result from local fluid circulation
patterns associated with nearby basement highs.

Heat flow station HF02 is also located along seismic Line 7 to the southeast of heat flow
station HFO1 (Figs. IV-1 and IV-5). This station traverses the ridge jump and was intended to
investigate heat flow variations associated with this feature. Heat flow values are uniformly high,
ranging between 114 and 129 mW m-2.

Heat flow station HFO3 lies along seismic Line 13 and is associated with a buried basement
high (Figs IV-1 and IV-6). Heat flow values off the basement high are low, 16 to 28 mW m?2.
Immediately adjacent to the basement high is a low heat flow value of 13 mW m-2. Two
penetrations were made over the basement high, and yielded values of 36 and 27 mW m-2.

Heat flow station HF04 lies along seismic Line 5 and is to the northeast of heat flow station
3 (Figs. IV-1 and IV-7). This line is parallel to the trench axis and lies along the outer rise of
flexing plate. Heat flow values are high ranging between 112 and 303 mW m-2. High values are
associated with a buried basement high that is the surface expression of the low-angle crustal
reflector imaged in several seismic profiles (Fig. III-5).

Heat flow station HFOS lies along seismic Line 3 and is oriented perpendicular to the outer
swell in an area of prominent normal faults (Figs. IV-1 and IV-8). Heat flow values are low,

ranging between 14 and 35 mW m-2. This profile is close to ODP Hole 1039 which has heat flow

near the seafloor 17 mW m2 and heat flow at depth of 9 mW m-2.
Heat flow station HF06 is collocated with seismic Line 14 and crosses the propagator trace

(Figs. IV-1 and IV-9). Heat flow values are high ranging between 109 and 128 mW m2. Two

higher values, 203 and 214 mW m-2, are associated with a buried basement high.
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Heat flow station HF07 is collocated with seismic Line 13 and crosses the ridge jump
(Figs. IV-1 and IV-10). Heat flow values vary between 127 and 148 mW m-2. This station also
crosses normal faults observed in seismic Lines 11, 13, and 14. The heat probe failed to penetrate
the seafloor or partially penetrated during some measurements, so the seafloor in this area may be
unusually hard compared to other areas in which we measured seafloor heat flow.

Heat flow station HF08 is collocated with seismic Line 11 and crosses the triple junction
trace (Figs. IV-1 and IV-11). This station shows bimodal distribution of heat flow values. To the
northwest, heat flow values are relatively low, ranging between 28 and 54 mW m-2, with a trend to
higher values approaching the triple junction trace. Over a distance of just 2 nmi, heat flow
increases to values of 88 to 104 mW m2, with most of the increase occurring between two
successive measurements. This transition in heat flow is displaced a short distance southeast of the
mapped location of the triple junction trace and correlates with an abrupt (but small) decrease in
basement depth and a thinning of sediments.

Heat flow station HF09 lies along seismic Line 13 and was intended to cross the triple
junction trace and the transition from low to high heat flow in an area of relatively flat basement
(Figs. IV-1 and IV-6). However the first measured value was relatively high, so we reoriented the
line to the northwest. Heat flow along this station remained relatively high and consistent, with
values of 102 to 111 mW m-2.

Heat flow station HF10 fills the gap between heat flow stations HF03 and HF09, along
seismic Line 13 (Figs. IV-1 and IV-6). The station runs northwest to southeast. The first two
penetrations gave values of 28 and 35 mW m-2, respectively, and the next four penetrations
yielded heat flow values between 89 and 100 mW m-2. Similar to HF0S, the transition from low to
high heat flow occurs in a relatively short distance, and correlates with a local basement high.
However, the transition in heat flow is displaced to the northeast, well away from the mapped
position of the triple junction trace.

Heat flow station HF11 is a continuation of heat flow station HF04 along seismic Line 5
(Figs. IV-1 and IV-7). This station was designed to help delineate the nature of the high heat flow
region observed along heat flow station HF04. Heat flow values decrease from 640 to 48 mW m-2
with distance from the buried basement high.

Heat flow station HF12 lies along seismic Line 13 and was intended to delineate the
transition from lower to higher heat flow values thought to be associated with the triple junction
trace (Figs. IV-1 and IV-12). The first measurements indicated relatively high values (107-113
mW m-2), so the probe was raised and the ship transited 11 nmi (20 km) to the northwest. The
next four measurements documented an abrupt transition from lower to higher values (38 to 107

mW m-2) from the northwest to the southeast, possibly associated with a large outcrop to the
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northwest.
Heat flow station HF13 was located along seismic Line 8, near the edge of the trench east

of the triple junction trace (Figs. IV-1 and IV-13). This station comprised only two measurements,

heat flow values of 141 and 163 mW m-2.

B. Autonomous Temperature Loggers on Cores

The autonomous data loggers are 175 mm in length, and have a nominal temperature
measurement range of — 5 to + 60 °C, with higher sensitivity at lower temperatures. Instrument
precision is 1 mK, and the absolute accuracy is on the order of several mK, based on laboratory
calibration. The time constant of the thermistor fixed in the tip of the sensor tube, attached to the
front of the data logger, is about 2 seconds. Non-volatile memory can hold up to 18 hours of
measurements collected at a sample rate of 1 s, or data from a longer period recorded at a lower
frequency.

The data loggers were mounted using fin-like attachments that extended from the core
barrel. The attachments consist of a curved base, a longitudinal section of pipe, 12 cm in length
and extending around 90° of arc; a plate welded to the base so that it projects away from the core
barrel; and a cylindrical probe holder welded to the edge of the plate. The plate holds the logger and
sensor 8 cm away from the outside of the core barrel, to avoid thermal disturbance from
penetration of the core barrel, and the sensor tip extends 5 mm in front of the end of the probe
housing. The data logger mounts were attached to the core barrels using a banding tensioner, seals,
and crimper and stainless-steel banding (1.9 cm wide, 0.6 mm thick). The fins were attached on
the core barrels in a spiral arrangement so that each logger would penetrate through undisturbed
sediment.

Core barrels on which thermistor probes are attached are deployed and recovered using
standard methods, with these exceptions. First, care must be taken so that the probes and probe
mounts are not damaged during operations. The shallowest probes were attached far enough down
the core barrel (about 1.5 m below the base of the weight stand) so that the would not be crushed
or stripped off when the corer was moved into or out of the cradle support for the coring system.
In addition, a braided cable that is used to assist in recovery of the corer is run along one side of
the barrel, and probe attachments are positioned such that they will not interfere with this cable.
When the core barrel penetrates the seafloor, it is left in place for several minutes to achieve partial
thermal equilibration, and in-situ temperatures are extrapolated to equilibrium conditions.

At the start of the expedition we ran an empty support assembly to test the reliability of the
banding straps, and after gaining confidence in the attachment method, we ran two to six tools on

selected cores. The probes generally stayed in position, but we lost and damaged several
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instruments and mounts when we cored thick ash layers or other lithologies that were difficult to
penetrate. Seventeen cores were equipped with outriggers. One attachment including the data
logger was lost and the sensor tips of four loggers were bent. Although the tools with bent tips
continued to operate, they were not deployed again in order to prevent more damage. A tilt sensor
deployed in the weight stand provided continuous tilt records during deployments; measured tilt
was <5° in all deployments in which the probes penetrated the seafloor (i.e., the corer did not fall
over).

Except from the first two deployments, which included empty probe mounts as an
operational test, reliable gradients were determined from all deployments. The results are highly
reproducible based on multiple measurements at one location, as PC18, 38 and 39 have shown,
and are also confirmed by nearby measurements with the multipenetration heat flow probe.
Instrumented gravity cores generally carried three temperature probes distributed over a length of
2.9 m. The number of outriggers on the piston cores varied with expected penetration depths and
sediment types, but was as great as six probes over a depth range of 8.7 m.

A summary of results from all thermistor probe deployments is provided in Table IV-2, and
an example of data from deployment on Core GCO6 is shown in Figure IV-14. For this
deployment, three probes were attached to the core barrel at distances of 1.58, 2.25 and 2.88 m
from the base of the weight stand. The tools all penetrated the sediment and produced good
temperature records, indicating a thermal gradient of 0.152 °C/m. Assuming a thermal conductivity
of 0.74 W/m-K, based on data from nearby multipenetration probe measurements, heat flow at this
site is 112 mW/m2.

For coring sites GC0O3 and GCO04, no reliable gradient can be given. In the first case, the
upper sensor was knocked loose during deployment and had to be removed, and in the second
case, the same tool did not penetrate into the sediment. Values from PC18, PC38 and PC39
indicated some of the highest heat flow values measured during the expedition, 570-605 mW/m2,
consistent with multipenetration measurements over a local basement high. Piston core PC19
penetrated completely with six temperature loggers attached to the core barrel, but one outrigger

was lost and two others were damaged, probably during penetration of a thick ash layer.

C. Thermal Conductivity Measurements

We evaluated detailed thermal conductivity variations in PC18. These values were collected
with two instruments, both using the transient, needle-probe technique. A University of Bremen
instrument was used first to make measurements in 2-cm intervals with the pulse heating method.
A UCSC instrument was used to collect additional data at a 2-cm interval, offset from the Bremen

measurements by 1 cm, yielding a nominal 1-cm interval for the combined data set. We noted some
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offset in values measured with the UCSC instrument on a needle-by-needle basis. We ran a series
of tests with the UCSC instrument using a Jello standard and verified a consistent offset in
apparent thermal conductivity values. We adjusted thermal conductivity values measured with the
UCSC instrument to account for these offsets, greatly improving the self-consistency of the data
(Fig. IV-15). Values vary from near 0.70 W/m °C near the seafloor to 0.75 W/m°C at 5 m depth.
Small-scale variations are associated with changes in lithology, including a 10-cm-thick ash layer
near 3 mbsf that resulted in higher thermal conductivities. These data will be used along with
results of in-situ measurements to estimate final heat flow values from the autonomous thermistor

probes.

In summary, heat flow measurements during the TicoFlux I expedition successfully
delineated the transition between anomalously low and higher heat flow values along several
transects. The primary transition is nominally associated with the triple junction trace, rather than
any of the other tectonic boundaries, but is offset from the trace by tens of kilometers in some
places. The transition is abrupt in several instances, suggesting that the cause of the generally-low
heat flow in the northwestern part of the field area is a shallow process, most likely hydrothermal
in origin. This interpretation is consistent with preliminary assessments of basement depths and
lithospheric flexure northwest of the triple junction trace, which are normal for 20-25 Ma
lithosphere.

TicoFlux I heat flow surveys also helped to delineate several areas within which heat flow
is locally elevated or suppressed, generally in association with some kind of basement structure.
One of the most interesting of these features (and associated thermal anomalies) is the low-angle
structure crossed by seismic Line 5, above which heat flow values are at least 10x the “regional

mean” for this area, and at least 20x greater than nearby values measured at ODP Site 1039.

V. Coring, Sediments and Geochemistry

Forty-three gravity and piston cores were collected during TicoFlux I for sedimentological
and pore-fluid analysis (Fig. V-1 and Table V-1). Gravity cores were used in areas where sediment
was expected to be particularly thin and where there was a danger of hitting bare rock. Piston cores
were collected in areas where sediment was thicker and where collection of a longer sediment
section was thought to be necessary. These cores were collected during twelve, 12-hour periods
with each period focusing on a particular geologic feature or set of nearby features. Each feature
that was targeted for coring had a seafloor expression of at least 20 m relative to the surrounding
area. Most features had a surface relief of 100 m and some were up to 300 m higher than the
surrounding region. Seismic lines provided information about sediment thickness near and on

these features and most features had exposed basaltic basement. Eleven features were targeted to
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determine (1) if the site is suitable for extensive coring and heat flow operations that will be the
focus of our efforts in 2002, (2) if fluid flow is evident, and (3) if we can determine the
composition of the fluid in basaltic basement. The basis for determining suitable future targets and
fluid flow include core recovery and systematic variations in pore water chemical composition. We
were limited at sea to measurements of pH, alkalinity, chlorinity, fluoride, calcium, magnesium,
and phosphate in pore waters. A more extensive and comprehensive analytical program will be
conducted ashore. Below we review the initial results from each of the eleven sites with

recommendations for coring in 2002.

A. Sedimentology/stratigraphy

Sediment types found in each core are shown in Figs. V-2 To V-7 and core locations are
shown with local bathymetry in Figs. V-8 to V-17. Piston cores are separated from gravity cores in
Figs. V-2 To V-7 because of differences in depth scales. We placed the lithologies cored during
TicoFlux I into five basic categories: hemipelagic mud, nannofossil chalk, mixed sediment,
variegated clay, and volcanic ash. Gradations exist within each category, and many of the contacts

between lithologies are transitional.

Hemipelagic Mud. This mixture of biogenic and siliciclastic debris (diatomaceous silty
clay) is the most common lithology throughout the study area. The texture ranges from silty clay to
clay, and the color is uniform dark olive gray. Mineral constituents consist largely of clay minerals
and silt-sized plagioclase and quartz. Biogenic constituents include abundant diatoms and variable
amounts of radiolarians and silica needles/spines. Carbonate content is low, consisting mostly of
coccoliths. Other constituents in minor to trace quantities include volcanic glass shards and opaque

grains. This lithology is typically homogeneous to mottled, with local trace fossils (Zoophycos).

Nannofossil Chalk. This fine-grained carbonate ooze is white to light gray or very pale
brown in color and typically mottled. Coccoliths make up the primary grain type. Other biogenic
particles include foraminifers, fragments of larger carbonate shells (pteropods?), diatoms,
radiolarians, and discoasters. The content of clay minerals is low to very low in the chalk. This
pelagic lithology also tends to be very firm, which inhibited coring.

Mixed Sediment. The category of mixed sediment differs from the typical hemipelagic mud
by its relatively high content of calcareous microfossils, plus siliciclastic grains. Color ranges from
gray to light olive brown and light yellowish brown. Primary constituents include clay minerals,
quartz/plagioclase silt, coccoliths, and carbonate shell fragments, with lesser amounts of diatoms

and radiolarians.
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Variegated Clay. The variegated clay lithology ranges in color from brown to light olive
brown, very pale brown, olive, olive gray, olive brown, yellowish brown, dark yellowish brown,
and dark grayish brown. Clay minerals make up the bulk of these deposits; the amount of
quartz/plagioclase silt ranges from trace to minor. The biogenic content is also unusually low.
Clay-rich sediments are common in close proximity to basalt-sediment contacts. In many cases,
fragments of basalt and Mn-oxide were recovered together with the clay. Reasons for the
variability in color could not be determined by smear-slide examination, but the colors may be

related to differences in clay mineralogy.

Volcanic Ash. There are two basic types of volcanic ash. The first type ranges in color
from white to light gray, and the particles consist almost exclusively of clear, unaltered glass
shards. Some such samples also contain crystals of fresh plagioclase and pyroxene. The light-
colored layers probably originated through primary ash falls. The second type of ash ranges in
color from dark gray to black. Fresh glass shards within the dark ash beds are brown in color, but
heavily altered and devitrified glass shards are also common. Other constituents include vitric rock
fragments, plagioclase and pyroxene crystals, opaque grains, clay minerals, and biogenic debris.
The abundance of heavily altered grains indicates that older volcanic rocks were incorporated into
the ash clouds during explosive eruptions. The ash layers range from less than 1 mm in thickness
to more than 10 cm. Particle size ranges from medium sand to coarse silt. Most beds have sharp
bases and sharp to diffuse tops. Normal size grading is common. In some cases, the ash deposits

occur as irregular patches or as material filling vertical burrows.

B. Pore fluid chemistry

Gravity cores GC02-05 were taken from a small (<1 km) peanut shaped feature that
extends about 250 m above the surrounding sediment (Figs. V-1 and V-8). GCO02 was located on
seismic Line 7 close to where basement may be exposed.Sediment recovered with this core is
mostly calcareous ooze. We targeted GCO3 at about the same depth but likely hit a steep cliff. This
altered our plan for GC04 which was taken on the flat platform near the summit of the feature. No
sediment was recovered, but the corer penetrated about 5 feet, based on thermal data recorded by
the outrigger thermistor probes. GCO5 was taken from the summit and included Mn nodules and
an oxide layer. No fluid flow is indicated in these cores on the basis of chemical data from pore
fluids; however, concentrations of phosphate decrease below bottom seawater concentrations.
Given the low heat flow and the low expected temperature in basement, we may not expect to
observe a change in Ca or Mg in pore fluids. The phosphate data are significant in that the low

concentration is consistent with interaction with basaltic basement. Although we may not have flow
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in the few cores from this site, this site will be a high priority for additional work next year. The
cliff at GCO3 should be targeted. In addition, cores from this area should be moved directly into
the lab for processing as soon as possible after they are collected to avoid evaporation during
sample handling.

Gravity cores GC06-GC09 were collected from a basement and seafloor high about 10
nautical miles northeast from the previous coring site, on seismic Line 4 (Figs. V-1 and V-9). The
coring site was on a small topographic high, elevated 200 m above the surrounding seafloor,
southeast of a larger basement edifice. The southeast corner of this feature needs to be surveyed
before additional work is attempted at this site. Core recovery at this site was poor (Table V-1),
although there is evidence that the corer successfully penetrated calcareous sediments. This
evidence includes temperature data from thermistor probes mounted on the core barrels, mud on
the inside and outside of the barrels, and inverted fingers in the core catchers. GCO8 was taken
with the 4" Benthos corer but only penetrated 16 cm. GC09, located near the summit, contained
several prominent ash layers and a full barrel. Pore waters from this core have alkalinity, Mg, and
phosphate concentrations that decrease with depth and Ca concentrations that increase with depth
relative to bottom seawater. Pore waters from this core clearly indicate a basement influence, but an
estimate of pore water flow rate through the section cannot be made. This site should be cored in
2002 after a more extensive seismic, bathymetric, and heat flow survey.

Gravity cores GC10-GC17 were collected above two basement highs close to seismic Line
12 (Figs. V-1 and V-10). Both features lie slightly off of the seismic line, and both show a
thinning of sediment. The first feature (GC10 and GC11) is 40 m high and may be faulted along
the southeastern side. The second feature, 4 nmi northwest of the first, extends 100 m above the
surrounding sediment, but lies on the shoulder of a large seamount (at least 350 m high). Cores
were collected on top of these features as well as along the base of fault-like structures (based on
bathymetry). Sediment from each of these cores is greenish clay with several ash layers. Alkalinity
and phosphate concentrations increase with depth in these cores. These data are consistent with the
presence of sulfate reduction in or below the sampled section. Given the location of the cores, the
lack of a basement component to the pore waters, and the low heat flow, these sites should not be
considered for future work to find fluid flow or basement fluid compositions.

Piston cores PC18, PC19, PC38, and PC39 were collected near the trench along seismic
Line 5 (Figs. V-1 and V-11). PC18, 38, and 39 were collected at the same location, which lies
along a seismic line at a point where sediment thins to about 75 m. PC 19 was collected to the east
of this line on a topographic high that rises about 25 m above the surrounding seafloor. This core
was used primarily for physical properties testing. The location of PC18, 38, and 39 coincides
with the highest heat flow measured on the cruise and with a shallowly-dipping reflector that

appears to penetrate deeply into (and possibly through) the crust (Figs. III-5, III-15 and III-16).
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Pore waters from these cores are consistent with the upwelling of a basement fluid at about 0.6
cm/yr (Fig. V-18). This fluid has a unique chemistry (98 mmol Ca/kg; 576 mmol chlorinity/kg; 1.3
mmol alkalinity/kg; 0.2 ymol phosphate/kg; 22 pmol F/kg; and a pH of 7.5). One particularly
intriguing feature of this fluid is the high Ca concentration. Given such a high concentration one
would expect there to be no alkalinity. This fluid is clearly coming from a source other than the
upper most (200-500 m) permeable layer of basaltic crust. Two possibilities exist: a deep fault
source or a subducting slab source. Given the existence of the deep fault and the high chlorinity,
our initial interpretation is that these fluids come from a source deep within the crust or perhaps the
upper mantle. Shore-based analytical programs will define the source of the fluids and will be a
major focus of work for the remainder of the year. Because we collected good samples of this
upwelling fluid in a controlled atmosphere, opportunities for work in this area next year will focus
on the collection of samples for carbon-14 dating and determining the extent, magnitude, and
pattern of fluid flow in reference to heat flow and geologic structure. Given the extent of fluid
alteration and the fact that we collected the endmember fluid, data from gravity cores will provide
the data needed to map the pattern of fluid flow. We should be able to collect four gravity cores in a
12-hour period compared to only two piston cores in the same time interval.

Gravity cores GC20-23 were collected along seismic Line 12 in the “warm” crust area,
southeast of the triple junction trace, ridge jump, and propagator trace (Figs. V-1 and V-12). The
seismic and hydrosweep data delineate a local topographical high that extends about 200 m above
the surrounding seafloor. This high is associated with a bathymetric feature that runs perpendicular
to the seismic line and additional bathymetric and seismic surveys of the this area will be required
to resolve the geometry and nature of this structure. We targeted specific features where sediment
thins and basement outcrops are likely. We recovered sediment with each of these cores and pore
water data from GC23 are consistent with fluid upwelling (Fig. V-18). An upwelling rate of about
1 cm/yr is estimated from the data. This core is on the southeast side of the topographic high where
sediments onlap a basaltic outcrop. An initial estimate of the composition of the basement fluid is
35 mmol Ca/kg, 553 mmol chlorinity/kg, 2.2 mmol alkalinity/kg, 2.6 pmol phosphate/kg, and a
pH of 7.5. There appears to be a basement fault associated with the edge of the basement structure
near where this core was collected, and this area will be a prime target for coring and heat flow
studies in 2002.

Gravity cores GC24-27 were located at the southwestern and southern side of a
conically-shaped seamount that extends about 450 m above the sediment plain to the south and 300
m above the sediment plain to the north along seismic Line 1 (Figs. V-1 and V-13). Seismic Line 1
crossed the southern portion of the outcrop and shows that sediment thins at the base. We targeted
this area of thin sediment with two cores along the seismic track (GC24 and 25) and placed two

additional cores at a similar location about 1.2 km south of the seismic line (Fig. V-13). We
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selected the last location based on hydrosweep data, inferring that steep bathymetric contours in
this area might indicate the presence of a fault. Although concentrations of chlorinity and alkalinity
remained uniform with depth in these cores, concentrations of Ca increased (by less than 10%) and
phosphate decreased. Although no flow was inferred in any of these cores this site is a possible
coring target for 2002. There is an interesting basement and topographic high to the east of this site
along seismic Line 1 where sediment thins to about 50-100 m.

Gravity cores GC28-31 were located on a topographic high that lies just south of seismic
Line 11 in the southeastern part of the field area (Figs. V-1 and V-14). This feature was selected
rather than another that lies about 2 km to the north because the selected feature is smaller (160
versus 300 m high) and has very steep relief along the edge, possibly indicating fault control on
basement relief. We targeted these steep sides with little success. None of the cores was long
enough to obtain more than three pore water samples. Given the problems recovering sediment
from this site, we are unlikely to consider working at this site, or at the similar feature to the north,
during the 2002 survey.

Gravity cores GC32-34 targeted a bathymetric high seaward of the trench (Figs. V-1 and
V-15). This feature was not crossed during the original seismic and hydrosweep survey, but was
mapped by hydrosweep during a transit between northern and southern edges of the field area,
between heat flow station HF04 and coring station GC20. The feature rises about 160 m above the
surrounding sediment, is elongate in shape, and coincides with the triple junction trace identified
mainly on the basis of magnetic anomalies. We cored both ends of this feature (GC32 and GC34)
and also placed a core on a ledge about half way up side (GC33). Only core GC34 recovered
significant sediment, and there is no indication of a basement fluid component in the pore waters
from this core. The fourth core from this coring session (GC35) was placed 7 km southwest of
this feature, on the top of a small topographic high that rises about 60 m above the surrounding
sediment. This feature was promising in that it is about the shape and size of the Baby Bare
seamount on the west flank of Juan de Fuca Ridge. The corer landed to the northwest of the local
topographical high and recovered a good sediment section, but shipboard chemical analyses are
consistent with early diagenetic processes and no identifiable basement component. No additional
coring in this area is justified given the results to date.

Piston cores PC36 and PC37 were located to the northwest of seismic Line 2, near where it
is crossed by seismic Line 13 (Figs. V-1 and V-16). The cores were collected from one of two
local topographic highs bisected by seismic Line 2. Because the core locations are off the seismic
line, basement relief and sediment thickness are unknown at the coring sites, but sediment
thickness is about 80 m 1-2 km to the southeast, where seismic Line 2 crosses the edge of the
feature (Fig. V-16). Because the topographic high is about 40 m shallower where we cored

relatively to where seismic Line 2 crosses the edge of the feature, we infer that sediment thickness
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at the coring sites should be less than 80 m. Piston cores were located at the peaks of two local
highs separated by about 600 m. Concentrations of chlorinity and alkalinity did not change with
depth, but concentrations of Ca increased to 12.5 mmol/kg at the base of the cores (about a 22%
increase). Even with this indication of an altered fluid at depth, there was no evidence for fluid
seepage through the sediments at this site. Given the Ca gradient and the relatively high heat flow
in the area, it seems likely that basement is fully buried in this area, and since we have no evidence
for faults or other structures that may guide basement fluids, this area does not offer an attractive
target for future work.

Gravity cores GC40-43 were taken on small basement high (about 200 m high) located at
the base of a much larger one (1200 m high), along seismic Line 4 (Figs. V-1 and V-17). Coring
targeted the bases of both features, including the area between them. Pore waters were obtained
from three of the four cores and showed signs of early diagenetic reactions. There is no evidence
for a basement component in the pore fluids. Additional work at this site is thus unlikely to yield
pore fluids indicating conditions in basement.

Ca versus depth profiles for most cores collected during the TicoFlux expedition are plotted
together in Figure V-18. Most data fall along a line that varies little with depth, indicating either
very thick sediments above reacted basement or basement pore fluids that look very much like
seawater. Pore fluids from GC23, PC18, PC38 and PC39 yielded profiles that indicate upward
fluid seepage through sediments and a basement fluid that differs significantly from seawater.

In summary, we have located and sampled:

l. a unique, highly-altered fluid that is upwelling through the sediment and must be derived
from a source other than the permeable upper 200-500 m of basaltic crust (Cores PC18,
PC38, PC39; Figs V-1 and V-11);

2. pore fluids seeping through the sediment in the ‘warm’ crust area associated with a
basement outcrop and bounding fault (Figs. V-1 and V-12);
3. sediment and pore water that provide indications that, with additional coring, we may be

able to sample basement formation fluids that upwell from ‘cold’ basement.

Work during the 2002 expedition will include additional coring to define the composition of fluids
in basement and to determine relations among geologic setting, heat flow, and fluid flow in this

region.

VI. Comments and Recommendations Concerning Facilities and Personnel

The Maurice Ewing is an outstanding observational platform run by a skilled and dedicated
crew. Nevertheless, we have a few suggestions for improvements that could help to enhance

scientific operations in the future.
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A. Facilities

The 10-gun array used for acquisition of seismic data provided an exceptionally clean
source, the long streamer worked well, and the Syntron data acquisition system (installed on
Ewing recently) allowed collection and storage of data with few problems. The system has
numerous automated checks to make sure that the data stream is not interrupted, but it would be
helpful to have a check for the acquisition of P-code GPS data. The P-code GPS antenna was
upsidedown for most of the primary seismic/hydrosweep survey, but although we noted that
navigation records appeared to be noisy, we did not realize that we were acquiring only rare P-code
fixes until late in the survey. The hydrosweep system provided useful data in a swath having a
width only slightly greater than water depth, but we understand that an upgrade to this system is
being installed.

We were able to connect portable computers to the shipboard network relatively easily, but
the Sunray terminals often locked up during routine operations. In addition, the system was
frustratingly slow when we tried to run backups and other operations at the same time as we
acquired seismic data. We recommend having two or three Sun workstations available for scientific
use rather than trying to run all programs through a single workstation using Sunrays. This would
allow scientific backups (seismic and other data and programs) to be run from a machine separate
from that handling primary system backups, reducing bottlenecks on the network. We were also
frustrated by having access to only a single-seat license for Matlab, since this software was needed
for seismic, heat flow and general data analysis.

Removal of the aft-starboard crane in the last year increased the working area on the fantail,
but also limited our ability to move equipment around on deck. We suggest consideration of
installation of a crane capable of handling loads up to 5000 1bs for future expeditions of this kind.
We were initially concerned with launch and recovery of heat flow equipment through the stern A-
frame without the assistance of the fantail crane, but these operations were handled smoothly using
the A-frame tugger, a snatch-block and capstan, and taglines.

Use of separate wires for running coring and heat flow operations (3/19 trawl and 0.680
wires, respectively) made switching between these operations relatively simple since we did not
have to reroute or reterminate the wires. We also greatly appreciated being able to run wire
operations from inside the main lab, using video displays of the drums and sheaves. However,
there were intermittent problems throughout the cruise with wire depth, rate and tension readouts,
both on the main gauges and on the numbers superimposed on the video screens. In addition, there
were problems with the level wind system on the traw] winch and with positioning of the sheave
that guides the 0.680 wire from the A-deck to the A-frame. We understand that these problems
resulted, in part, from these systems being used infrequently, but these problems were frustrating

and could have lead to instrument damage or loss. We estimate a total loss of about 24 hours of
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science time during our expedition because of winch, sheave and gauge problems, and urge

increased testing and maintenance of these important systems in the future.

B. Personnel

We were impressed with Ewing’s crew and technical support group. These personnel were
concerned with the nature and quality of scientific data being acquired by TicoFlux scientists,
generous with thoughtful advice, and willing to work long hours with humor and patience. They
were also extremely mindful of safety and helped us to streamline and simplify deck operations.
Although many other individuals contributed to the success of the TicoFlux scientific program, the
work of the following personnel is particularly noteworthy.

Captain Mark Landow ran virtually all heat-probe deployment and recovery operations on
the fantail, handing these tasks with grace and skill, and also participated in numerous core
recovery operations. The ship’s mates (Bert Thurston, Jeff Sylvia, and Rick Thomas)
demonstrated outstanding skill at station keeping during heat flow and coring operations, in many
cases remaining within 100 m or less of our targets for hours at a time, dodging fishing boats and
skirting rip currents. All of the officers responded positively to abrupt schedule changes and helped
us to use our time more effectively. First Engineer Matt Tucke and Technician Carlos Gutierrez
modified and repaired instruments and constructed adapters, contributing significantly to the
success of scientific operations.

Science Officer Chris Leidhold and Technician Karl Hagel launched and recovered the
seismic streamer rapidly and smoothly, tirelessly guided operation of the seismic data acquisition
system, managed winch operations, trouble-shot winch and wire-gauge problems, and performed
numerous other tasks that enhanced our scientific return. Technician Richard Oliver-Goodwin kept
the shipboard computer network running, despite being relatively unfamiliar with some shipboard
systems at the start, and assisted in troubleshooting data acquisition and storage problems
throughout the expedition.
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Figures and Tables

Table I-1. Summary of TicoFlux (EW0104) operations.

Figure I-1. Overview map of TicoFlux I field area and survey coverage showing regional tectonic
boundaries. Individual survey components are shown in later figures.

Table III-1. Seismic survey parameters.

Table I1I-2. Gun configuration.

Table III-3. Seismic line locations, times and data backup parameters.

Figure III-1. TicoFlux I seismic line locations and dates and major tectonic boundaries.

Figure III-2. Heat flow station HFO1 located on seismic Line 7.

Figure III-3. Heat flow station HF02, located on seismic Line 7.

Figure ITI-4. Heat flow station HF03, located on seismic Line 13.

Figure III-5. Heat flow station HF04, located on seismic Line 5.

Figure I1I-6. Heat flow station HFOS, located on seismic Line 3.

Figure III-7. Heat flow station HF06, located on seismic Line 14.

Figure II1-8. Heat flow station HF07, located on seismic Line 13.

Figure HI-9. Heat flow station HFO8, located on seismic Line 11.

Figure III-10. Heat flow station HF09, located on seismic Line 13.

Figure III-11. Heat flow station HF10, located on seismic Line 13.

Figure III-12. Heat flow station HF11, located on seismic Line 5.

Figure III-13. Heat flow station HF12, located on seismic Line 14.

Figure III-14. Heat flow station HF 13, located on seismic Line 8.

Figure III-15. Migration from full stack of part of seismic Line 11, showing crustal reflections.
Figure III-16. Migration from full stack of part of seismic Line 13, showing crustal reflections.

Figure III-17. Part of seismic Line 13 showing detail of deformation, probably associated with a
sill.

Table IV-1. Summary of multipenetration heat flow positions, values and nearest seismic points.
Heat flow values have not been corrected for instrument tilt, sedimentation or local bathymetry.

Table IV-2. Summary of autonomous temperature logger deployments and results.
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Figure IV-1. TicoFlux I heat flow station locations.

Figure IV-2. Example of data collected during four penetrations with multipenetration heat flow
probe. Measurement interval is 10 s. There are 11 sediment thermistors and one bottom water
thermistor (value of latter remains relatively constant through penetration). Initial period of
temperature rise and equilibration follows penetration of the seafloor by the probe. Heat pulse is
fired after seven minutes in bottom with no change in elevation of probe. The instrument is left to
equilibrate for about 7 minutes after firing heat pulse, then is removed the seafloor.

Figure IV-3. Example of processed, multipenetration probe data. A. Estimated equilibrium
temperatures versus depth. All temperatures are relative to bottom water. Open symbols indicate
depths for temperatures based on assumption that shallowest measurement is at seafloor. Solid
symbols show apparent depths after requiring that thermal gradient pass through bottom water
temperature at the seafloor. B. Sediment thermal conductivity versus depth. Solid lines indicate
depth intervals over which conductivites are assumed to apply in calculating thermal resistances,
half way between successive measurements, except for the shallowest value, which is assumed to
apply up to the seafloor. Dashed line indicates thermal conductivity of shallow sediments required
to make best-fitting straight line in part C pass through zero. This is the effective conductivity of
the shallow sediment section, assuming that other conductivities and depth intervals are correct. C.
Temperature versus cumulated thermal resistance (depth corrected for differences in thermal
conductivity). The slope of the best-fitting straight line that passes through the data is the
conductive heat flow.

Figure IV-4. Contoured hydrosweep bathymetry with HFO1 measurement locations.

Figure IV-5. Contoured hydrosweep bathymetry with HFO2 measurement locations.

Figure IV-6. Contoured hydrosweep bathymetry HF03, HF09 and HF10 measurement locations.
Figure IV-7. Contoured hydrosweep bathymetry with HF04 and HF11 measurement locations.
Figure IV-8. Contoured hydrosweep bathymetry with HFO5 measurement locations.

Figure IV-9. Contoured hydrosweep bathymetry with HFO6 measurement locations.

Figure IV-10. Contoured hydrosweep bathymetry with HF07 measurement locations.

Figure IV-11. Contoured hydrosweep bathymetry with HFO8 measurement locations.

Figure IV-12. Contoured hydrosweep bathymetry with contours and HF12 measurement
locations.

Figure IV-13. Contoured hydrosweep bathymetry with contours and HF13 measurement
locations.

Figure IV-14. Example of data from autonomous thermistor probes strapped to core barrels from
GCO06.

Figure IV-15. Thermal conductivity from core PC18 collected with Bremen and UCSC (WHOI-
ThermCon 96) instruments.

Table V-1. Summary of core types, locations, times and recovery.
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Figure V-1. TicoFlux I coring locations.

Figure V-2. Lithological logs of cores GCO1-GC09.

Figure V-3. Lithological logs of cores GC10-GC18.

Figure V-4. Lithological logs of cores GC19-GC27

Figure V-5. Lithological logs of cores GC28-GC36.

Figure V-6. Lithological logs of cores GC37-GC43.

Figure V-7. Lithological logs of cores PC18, PC19, PC36, PC37, PC38 and PC39.
Figure V-8. Contoured hydrosweep bathymetry showing locations of cores GC02-GCO05.
Figure V-9. Contoured hydrosweep bathymetry showing locations of cores GC06-GCO09.
Figure V-10. Contoured hydrosweep bathymetry showing locations of cores GC10-GC17.

Figure V-11. Contoured hydrosweep bathymetry showing locations of cores PC18, PC19, PC38,
PC39.

Figure V-12. Contoured hydrosweep bathymetry showing locations of cores GC20-GC23.
Figure V-13. Contoured hydrosweep bathymetry showing locations of cores GC24-GC27.
Figure V-14. Contoured hydrosweep bathymetry showing locations of cores GC28-GC31.
Figure V-15. Contoured hydrosweep bathymetry showing locations of cores GC32-GC34.
Figure V-16. Contoured hydrosweep bathymetry showing locations of cores PC36 and PC37.
Figure V-17. Contoured hydrosweep bathymetry showing locations of cores GC40-GC43.

Figure V-18. Ca concentrations versus depth in pore waters, illustrating influence of upward
seepage in Cores GC23, PC18, PC38 and PC39.
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Table III-1. Seismic survey parameters.

Sample rate (ms)
Streamer
length (m)
Number of channels
Record length  (s)

Distances (m)
Center of array from stern
Center of Ch 480 from stern
Consists of:
Tow leader
Two 50m head stretches
CDP spacing
Stern to Tasmon P-code antenna
Tasmon P-code to hydrosweep
Tasmon P-code to center line
Tasmon P-code to 3.5 kHz
Source array to NT

6000
480
12.5

39.6
221.3

115.0
100.0
6.3
13.8
50.6
6.2
32.3
181.7




Table I1I-2. Gun configuration.

GuniD Side Gun size Gun size nterline distance
(in°) (m) (m)
1 Stbd 145 59 17.98
2 Stbd 850 (spare) 54 16.46
5 Stbd 850 39 11.89
7 Stbd 235 29 8.84
8 Stbd 80 24 7.32
9 Stbd 200 10 3.05
12 Port 385 10 3.05
13 Port 305 24 7.32
14 Port 120 29 8.84
16 Port 585 39 11.89
19 Port 585 (spare) 54 16.46
20 Port 145 59 17.98
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Seismic line locations and dates
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Table V-1. Summary of core types, locations, times and recovery.

Core ID Sizeand type ime in botto Recovered Number of Porewater  Latitude (N) Longitude (W)
Core Type J. GMT length sections  samples {Degrees Minutes|Degrees Minutes
Day Time (cm)

EWO0104-01GC 2.5" Gravity 106 1605 231 2 10 7 51.603 85 16.390
EWO0104-02GC 2.5" Gravity 116 1503 310 2 12 8 37.424 87 16.621
EWO0104-03GC 2.5" Gravity 116 1844 <l 0 0 8 37.136 87 16.837
EWO0104-04GC 2.5" Gravity 116 2157 0 0 0 8 37.149 87 16.984
EW0104-05GC 2.5" Gravity 117 0052 122 1 6 8 37.441 87 16.800
EW0104-06GC 2.5" Gravity 118 0739 0 0 0 8 44.485 87 12.797
EW0104-07GC 2.5" Gravity 118 1036 0 0 0 8 44.345 87 12.641
EWO0104-08GC 4" Gravity 118 1345 16 1 2 8 44.245 87 12.484
EW0104-09GC 2.5" Gravity 118 1714 297 2 13 8 44.519 87 12.820
EW0104-10GC 2.5" Gravity 119 0459 293 2 12 9 26.184 86  55.921
EW0104-11GC 2.5" Gravity 119 0800 317 2 10 9 26.147 86  55.990
EW0104-12GC 2.5" Gravity 119 3038 285 2 10 9 28.847 86  59.797
EW0104-13GC 2.5" Gravity 119 1329 300 2 10 9 28.873 86  59.781
EW0104-14GC 2.5" Gravity 121 2106 305 2 10 9 28.278 86  59.673
EWO0104-15GC 2.5" Gravity 122 0000 322 2 10 9 28.259 86  59.847
EWO0104-16GC 2.5" Gravity 122 0316 320 2 10 9 28.443 86  59.752
EWO0104-17GC 2.5" Gravity 122 0618 248 2 8 9 28.555 86  59.621
EWO0104-18PC 4" Piston 123 0652 891 7 17 9 40.573 86  34.124
EWO0104-18GC 4" Gravity 123 0652 212 2 8 9 40.573 86 34.124
EW0104-19PC 4" Piston 123 1414 558 4 4 9 40.608 86 33.676
EW0104-19GC 4" Gravity 123 1414 190 2 9 9 40.608 86 33.676
EW0104-20GC 2.5" Gravity 125 1337 275 2 8 8 30.935 85 59.199
EWO0104-21GC 2.5" Gravity 125 1639 258 2 8 8 30.360 85 58.587
EW0104-22GC 2.5" Gravity 125 1944 185 2 8 8 30.086 85 58.308
EW0104-23GC 2.5" Gravity 125 2234 317 2 8 8 29.797 85 58.022
EW0104-24GC 2.5" Gravity 127 0814 187 2 8 8 15.323 86 14.589
EW0104-25GC 2.5" Gravity 127 1106 52 1 2 8 15.319 86 14.553
EWO0104-26GC 2.5" Gravity 127 1405 347 3 10 8 14.575 86 13.930
EW0104-27GC 2.5" Gravity 127 1717 274 2 8 8 14.599 86 13.938
EW0104-28GC 2.5" Gravity 129 0415 55 1 3 8 34.821 85  46.675
EWO0104-29GC 2.5" Gravity 129 0654 50 1 1 8 34.876 85  46.653
EWO0104-30GC 2.5" Gravity 129 1027 40 1 2 8 34.369 85 47478
EW0104-31GC 2.5" Gravity 129 1257 10 1 0 8 34.479 85  47.554
EW0104-32GC 2.5" Gravity 130 2213 0 0 0 9 16.655 86 13.390
EW0104-33GC 2.5" Gravity 131 0148 59 1 3 9 16.107 86 13.821
EW0104-34GC 2.5" Gravity 131 0451 218 2 8 9 15.008 86 15.019
EWO0104-35GC 2.5" Gravity 131 0834 304 2 8 9 13.555 86 18.699
EW0104-36PC 4" Piston 132 1501 641 5 16 8 56.250 86  40.953
EWO0104-36GC 4" Gravity 132 1501 98 1 6 8 56.250 86  40.953
EW0104-37PC 4" Piston 132 2112 774 6 19 8 56.453 86  41.110
EW0104-37GC 4" Gravity 132 2112 27 1 2 8 56.453 86  41.110
EWO0104-38PC 4" Piston 134 0056 798 6 19 9 40.588 86  34.132
EWO0104-38GC 4" Gravity 134 0000 208 2 7 9 40.588 86 34.132
EW0104-39PC 4" Piston 134 0719 788 6 19 9 40.571 86  34.154
EW0104-39GC 4" Gravity 134 0719 243 2 6 9 40.571 86 34.154
EWO0104-40GC 2.5" Gravity 135 1808 237 2 8 9 8.103 86  54.591
EWO0104-41GC 2.5" Gravity 135 2049 133 1 6 9 7.784 86  54.376
EW0104-42GC 2.5" Gravity 136 0000 14 1 0 9 7.521 86  54.286
EW0104-43GC 2.5" Gravity 136 0305 302 2 8 9 8.144 86 54.845
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